Method for preparing ceramic materials

27-02-2024 дата публикации
Номер:
US0011911737B2
Принадлежит: CITY UNIVERSITY OF HONG KONG
Контакты:
Номер заявки: 46-48-1745
Дата заявки: 15-11-2021







Цитирование НПИ

Addadi et al., Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003), 959-970. https://doi.org/10.1002/adma.200300381.
Alberic et al., The crystallization of amorphous calcium carbonate is kinetically governed by ion impurities and water, Adv. Sci. 5 (2018), 1701000. https://doi.org/10.1002/advs.201701000.
Du et al., Water: How does it influence the CaCO3 formation? Angew. Chem. Int. Ed. 59 (2020), 1798-1816 https://doi.org/10.1002/anie.201903662.
Gilbert et al., Biomineralization by particle attachment in early animals, Proc. Natl. Acad. Sci. 116 (2019), 17659-17665 https://doi.org/10.1073/pnas.1902273116.
Gong et al., Phase transitions in biogenic amorphous calcium carbonate, Proc. Natl. Acad. Sci. 109 (2012), 6088-6093 https://doi.org/10.1073/pnas.1118085109.
Gordon et al., Amorphous intergranular phases control the properties of rodent tooth enamel, Science 347 (2015), 746-750. https://doi.org/10.1126/science.1258950.
Ihli et al., Dehydration and crystallization of amorphous calcium carbonate in solution and in air, Nat. Commun. 5 (2014), 1-10. https://doi.org/10.1038/ncomms4169.
Kim et al., The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, J. R. Soc. Interface 1 (2004), 17-22. https://doi.org/10.1098/rsif.2004.0003.
Politi et al., Built for tough conditions, Science 347 (2015), 712-713. https://doi.org/10.1126/science.aaa5245.
Politi et al., Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation, Chem. Mater. 22 (2010), 161-166. https://doi.org/10.1021/cm902674h.
Politi et al., Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase, Science 306 (2004), 1161-1164. https://doi.org/10.1126/science.1102289.
Politi et al., Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule, Proc Natl. Acad. Sci. 105 (2008), 17362-17366. https://doi.org/10.1073/pnas.0806604105.
Pouget et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM, Science 323 (2009), 1455-1458. https://doi.org/10.1126/science.1169434.
Raz et al., The transient phase of amorphous calcium carbonate in sea urchin larval spicules: The involvement of proteins and magnesium ions in its formation and stabilization, Adv. Funct. Mater. 13 (2003), 480-486. https://doi.org/10.1002/adfm.200304285.
Segal, Chemical synthesis of ceramic materials, J. Mater. Chem. 7 (1997), 1297-1305 https://doi.org/10.1039/a700881c.
Stupp et al., Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science 277 (1997), 1242-1248. https://doi.org/10.1126/science.277.5330.1242.
Sviben et al., A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga, Nat. Commun. 7 (2016), 11228. https://doi.org/10.1038/ncomms11228.
Tester et al., Controlling nucleation in giant liposomes, Chem. Commun. 50 (2014), 5619-5622. https://doi.org/10.1039/c4cc01457j.
Weiner et al., Choosing the crystallization path less traveled, Science 309 (2005), 1027-1028 https://doi.org/10.1126/science.1114920.
Xiao et al., Bio-inspired synthesis: understanding and exploitation of the crystallization process from amorphous precursors, Nanoscale 4 (2012), 54-65. https://doi.org/10.1039/c1nr11044f.
Получить PDF