Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 6. Отображено 6.
15-04-2021 дата публикации

Hachage d'image perceptuel partiel pour la déconstruction de factures.

Номер: CH0000716698A2
Принадлежит:

L'invention a pour objet un appareil et un procédé pour identifier le fournisseur dans une facture (101) en divisant la facture en trois régions (102-104) et en effectuant un hachage d'image perceptuel sur chaque section. Ensuite, une distance de Hamming est utilisée pour comparer la valeur de hachage de chaque section avec les valeurs de hachages de factures connues afin d'identifier le fournisseur qui a envoyé la facture.

Подробнее
21-04-2021 дата публикации

Partial perceptual image hashing for invoice deconstruction

Номер: GB0002588251A
Принадлежит:

An image of an invoice (e.g. rasterised document, PNG image etc, may contain logo in the header) is split into regions (302, see top, middle and bottom parts 102, 103 and 104 of the invoice, fig 1). A perceptual image hash is calculated from each region of the invoice image (303). Each hash is then matched against an entry in a database where the vendor name is known (look up match 304) by calculating a hamming distance between an image hash and each entry in the database of known vendors and taking the smallest hamming distance. In this way, the database is searched for a match and the vendor associated with the invoice is identified. The perceptual image hash may be calculated using: an average or difference or a pHash algorithm. The invoice image may be reduced to greyscale and to an 8x8 grid of pixels. If the sum of the best two hamming distances of the hashes of two of the invoice regions is greater than a threshold, then the invoice 101 is not considered to match the database of known ...

Подробнее
15-11-2022 дата публикации

Partial perceptual image hashing for invoice deconstruction

Номер: US0011501344B2
Принадлежит: Bottomline Technologies Limited

A system and method for deconstructing a document is described herein, where the method is an improvement over existing document deconstruction techniques. These improvements increase speed and accuracy by rapidly identifying the vendor in an invoice by splitting the invoice into three regions and performing a perceptual image hashing on each section. Then a hamming distance is used to compare the hash for each section with the hashes of known invoices to identify the vendor who sent the invoice.

Подробнее
23-02-2023 дата публикации

Partial Perceptual Image Hashing for Document Deconstruction

Номер: US20230055042A1
Принадлежит: Bottomline Technologies Limited

A system and method for deconstructing a document is described herein, where the method is an improvement over existing document deconstruction techniques. These improvements increase speed and accuracy by rapidly identifying the source in a document by splitting the document into a plurality of sections and performing a perceptual image hashing on each section. Then a hamming distance is used to compare the hash for each section with the hashes of known documents to identify the source who sent the document.

Подробнее
15-04-2021 дата публикации

Partial Perceptual Image Hashing for Invoice Deconstruction

Номер: US20210110447A1
Принадлежит: Bottomline Technologies Limited

A system and method for deconstructing a document is described herein, where the method is an improvement over existing document deconstruction techniques. These improvements increase speed and accuracy by rapidly identifying the vendor in an invoice by splitting the invoice into three regions and performing a perceptual image hashing on each section. Then a hamming distance is used to compare the hash for each section with the hashes of known invoices to identify the vendor who sent the invoice.

Подробнее