Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 60. Отображено 60.
20-02-2013 дата публикации

Catalyst compositions for producing mixed alcohols

Номер: CN102939154A
Принадлежит:

Catalyst compositions for producing mixed alcohols from a synthesis gas feed are provided. The catalyst composition comprises a catalytic metal combination on a catalyst support, a first optional promoter and a second optional promoter, where the catalytic metal combination consists essentially of iridium, vanadium, and molybdenum.

Подробнее
18-12-2013 дата публикации

Catalysts for the conversion of synthesis gas to alcohols

Номер: CN103459020A
Принадлежит:

A catalyst for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminum, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.

Подробнее
25-12-2013 дата публикации

Catalysts for the conversion of synthesis gas to alcohols

Номер: CN103476493A
Принадлежит:

A catalyst suitable for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, two or more metals selected from ruthenium, palladium, gold, chromium, aluminum and tin, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.

Подробнее
19-01-2017 дата публикации

CATALYSTS FOR THE CONVERSION OF SYNTHESIS GAS TO ALCOHOLS

Номер: US20170015609A1
Принадлежит:

A catalyst support for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminum, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols. 1. A process for producing one or more C-Calcohols comprising:placing synthesis gas in contact with a catalyst under conditions sufficient to convert at least a portion of the synthesis gas to at least one of ethanol, propanol and butanol, wherein the catalyst comprises:nickel;molybdenum;at least one metal selected from a group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminum;a promoter comprising at least one of an alkali metal or alkaline earth metal; anda catalyst support selected from a group consisting of silica, alumina, magnesium oxide, and mixtures thereof.2. The process for producing C-Calcohols according to claim 1 , further comprising:reducing the catalyst using a reducing agent prior to contact with the synthesis gas.3. The process for producing C-Calcohols according to claim 2 , wherein the reducing agent comprises hydrogen.4. The process for producing C-Calcohols according to claim 2 , wherein reducing the catalyst comprises using the reducing agent at a pressure between 0.10 MPa and 4.14 MPa.5. The process for C-Calcohols according to claim 4 , wherein reducing the catalyst further comprises using the reducing agent at a temperature between 250° C. and 1200 ° C.6. The process for C-Calcohols according to claim 5 , wherein reducing the catalyst further comprises using the reducing agent at a temperature between 330° C. and 700° C.7. The process for producing C-Calcohols according to claim 1 , ...

Подробнее
24-04-2013 дата публикации

Metal organic framework filled polymer based membranes

Номер: CN103068474A
Принадлежит:

A membrane for separation of gases, the membrane including a metal-organic phase and a polymeric phase, the metal-organic phase having porous crystalline metal compounds and ligands, the polymeric phase having a molecularly self assembling polymer.

Подробнее
16-08-2012 дата публикации

SUPPORTED RHODIUM SYNTHESIS GAS CONVERSION CATALYST COMPOSITIONS

Номер: US20120208695A1
Принадлежит: Dow Global Technologies LLC

A supported catalyst composition suitable for use in converting synthesis gas to alcohols comprises a catalytic metal, a catalyst promoter and a catalyst support. 1. A supported catalyst composition , the composition comprising a catalytic metal combination and a catalyst support selected from a group consisting of a) rhodium , vanadium and tungsten with one or more of iron , lithium , calcium , zinc , rhenium , zirconium and potassium on a support selected from silica , magnesia or a combination thereof; b) rhodium , cerium and manganese with one or more of bismuth , magnesium and sodium on an alumina support; c) rhodium , vanadium , zirconium , zinc , and , optionally , one or more of hafnium and rhenium , on a silica support; d) rhodium , iridium , vanadium and molybdenum plus one or more of potassium , zirconium and rhenium on an alumina support; and e) rhodium , vanadium , molybdenum , rhenium and potassium on an alumina support.2. The composition of claim 1 , wherein the alumina is alpha-alumina.3. The composition of a) claim 1 , wherein the catalyst support is impregnated with rhodium in an amount within a range of from 1 millimole per hectogram (mmol/hg) to 50 mmol/hg claim 1 , vanadium in an amount within a range of from 2 mmol/hg to 100 mmol/hg claim 1 , tungsten in an amount within a range of from 0.5 mmol/hg to 80 mmol/hg claim 1 , and the one or more of iron claim 1 , lithium claim 1 , calcium claim 1 , zinc claim 1 , rhenium claim 1 , zirconium and potassium in a total amount within a range of from 0.1 mmol/hg to 100 mmol/hg each mmol/hg being based upon the weight of catalyst support prior to deposition of the catalytic metals and catalyst promoters.4. The composition of b) claim 1 , wherein the catalyst support is impregnated with rhodium in an amount within a range of from 1.0 mmol/hg to 50 mmol/hg claim 1 , cerium in an amount within a range of from 0.5 mmol/hg to 100 mmol/hg claim 1 , manganese in an amount within a range of from 0.5 mmol/hg to ...

Подробнее
31-01-2013 дата публикации

CATALYST COMPOSITIONS FOR PRODUCING MIXED ALCOHOLS

Номер: US20130029841A1
Принадлежит: Dow Global Technologies LLC

Catalyst compositions for producing mixed alcohols from a synthesis gas feed. The catalyst composition comprises a catalytic metal combination on a catalyst support, a first optional promoter and a second optional promoter, where the catalytic metal combination consists essentially of iridium, vanadium, and molybdenum. 1. A catalyst composition for producing mixed alcohols comprising a catalytic metal combination on a catalyst support , a first optional promoter and a second optional promoter , wherein the catalytic metal combination consists essentially of iridium , vanadium , and molybdenum , and the first optional promoter is selected from the group consisting of zirconium , rhenium , palladium , hafnium , manganese , tungsten and combinations thereof , and the second optional promoter is selected from the group consisting of potassium , lithium , sodium , rubidium , cesium and combinations thereof.2. The composition of claim 1 , wherein the catalytic metal combination includes iridium in an amount within a range of from 1 millimoles per hectogram to 65 millimoles per hectogram claim 1 , vanadium in an amount within a range of from 2 millimoles per hectogram to 80 millimoles per hectogram claim 1 , and molybdenum in an amount within a range of from 3 millimoles per hectogram to 85 millimoles per hectogram claim 1 , each millimole per hectogram based on a mass of the catalyst support prior to the addition of the catalytic metal combination claim 1 , the first optional promoter claim 1 , and the second optional promoter.3. The composition of claim 1 , wherein the first optional promoter includes at least one of zirconium in an amount within a range of from 2.0 per hectogram to 80.0 millimoles per hectogram claim 1 , rhenium in an amount within a range of from 2.0 millimoles per hectogram to 80.0 millimoles per hectogram claim 1 , and palladium in an amount within a range of from 0.2 millimoles per hectogram to 5.0 millimoles per hectogram claim 1 , each millimole ...

Подробнее
28-02-2013 дата публикации

Metal Organic Framework Filled Polymer Based Membranes

Номер: US20130047843A1
Принадлежит: Dow Global Technologies LLC

A membrane for separation of gases, the membrane including a metal-organic phase and a polymeric phase, the metal-organic phase having porous crystalline metal compounds and ligands, the polymeric phase having a molecularly self assembling polymer. 1. A membrane for separation of gases , said membrane comprising a metal-organic phase and a polymeric phase , said metal-organic phase comprising porous crystalline metal compounds and ligands , said polymeric phase comprising a molecularly self assembling polymer.2. The membrane of claim 1 , wherein the metal-organic phase comprises from about 1 weight percent (wt %) to about 70 wt % of the polymer MOF composite based on total weight of the polymer MOF composite.3. The membrane of claim 1 , wherein said metal organic phase comprises transition metal or metalloid compounds wherein said transition metal or metalloid is selected from the group consisting of Scandium claim 1 , Titanium claim 1 , Vanadium claim 1 , Chromium claim 1 , Manganese claim 1 , Magnesium claim 1 , Cobalt claim 1 , Iron claim 1 , Nickel claim 1 , Copper claim 1 , Zinc claim 1 , Yttrium claim 1 , Zirconium claim 1 , Niobium claim 1 , Molybdenum claim 1 , Ruthenium claim 1 , Rhodium claim 1 , Palladium claim 1 , Silver claim 1 , Cadmium claim 1 , Lanthanum claim 1 , Hafnium claim 1 , Tantalum claim 1 , Tungsten claim 1 , Rhenium claim 1 , Osmium claim 1 , Iridium claim 1 , Gold claim 1 , Indium claim 1 , Aluminum claim 1 , Lead claim 1 , Tin claim 1 , Gallium claim 1 , Germanium claim 1 , Bismuth claim 1 , Polonium and mixtures thereof.4. The membrane of any of the previous claims claim 1 , wherein said metal-organic phase comprises a transition metal selected from the group consisting of Aluminum claim 1 , Indium claim 1 , Nickel claim 1 , Zinc claim 1 , and mixtures thereof.5. The membrane of any of the previous claims claim 1 , wherein said ligand is selected from the group of selected from the group of a bidentate ligand claim 1 , a tridentate ...

Подробнее
25-07-2013 дата публикации

ANDERSON-TYPE HETEROPOLY COMPOUND-BASED CATALYST COMPOSITIONS AND THEIR USE CONVERSION OF SYNTHESIS GAS TO OXYGENATES

Номер: US20130190411A1
Принадлежит: Dow Global Technologies LLC

Use a transition metal-containing, Anderson-type heteropoly compound catalyst to convert synthesis gas to an oxygenate, especially an alcohol that contains from one carbon atom to six carbon atoms. 1. A process for converting synthesis gas to an oxygenate , which process comprises contacting a mixture of hydrogen and carbon monoxide with a transition metal-containing , Anderson-type heteropoly compound catalyst under conditions of temperature , pressure and gas hourly space velocity sufficient to convert said mixture to at least one alcohol wherein the alcohol contains from one carbon atom to six carbon atoms , the catalyst having a structure represented by general formula (A)[MMoW]M , wherein A is H , an ammonium ion , or an alkali metal ion , Mis at least one of aluminum , zinc or a transition metal selected from iron , ruthenium , chromium , rhodium , copper , cobalt , nickel , palladium and iridium , Mis an optional modifier that is at least one metal selected from an alkali metal , an alkaline earth metal and a transition metal selected from a group consisting of rhenium , chromium , palladium , nickel , iridium and cobalt , x is an integer within a range of from 3 to 4 and y is an integer within a range of from 0 to 6.2. The process of claim 1 , wherein the catalyst comprises a mixture of at least two Anderson-type heteropoly compound catalysts claim 1 , a first wherein Mis rhodium and a second wherein Mis selected from cobalt claim 1 , iridium claim 1 , copper claim 1 , nickel claim 1 , palladium claim 1 , zinc claim 1 , aluminum claim 1 , iron claim 1 , chromium claim 1 , and ruthenium.3. The process of claim 1 , wherein the catalyst further comprises at least one catalyst support selected from silicas claim 1 , aluminas claim 1 , titanias claim 1 , tungsten oxides claim 1 , zirconias claim 1 , magnesias claim 1 , zinc oxides or mixtures thereof claim 1 , and modified supports selected from zirconia-modified silicas and aluminas claim 1 , magnesium ...

Подробнее
16-01-2014 дата публикации

CATALYSTS FOR THE CONVERSION OF SYNTHESIS GAS TO ALCOHOLS

Номер: US20140018453A1
Принадлежит: Dow Global Technologies LLC

A catalyst for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminium, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols. 1. A synthesis gas conversion catalyst comprising:nickel;molybdenum;at least one metal selected from a group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminum;a promoter comprising at least one of an alkali metal or alkaline earth metal; anda catalyst support selected from a group consisting of silica, alumina, and magnesium oxide, or a mixture thereof.2. The catalyst of claim 1 , wherein the at least one metal comprises a combination of palladium and aluminum; ruthenium and chromium; or gold and aluminum.3. The catalyst of claim 1 , wherein the promoter is cesium.4. The catalyst of claim 3 , wherein the promoter further comprises calcium.5. A process for producing one or more C-Calcohols claim 1 , which method comprises placing synthesis gas in contact with the catalyst of under conditions sufficient to convert at least a portion of the synthesis gas to at least one of ethanol claim 1 , propanol and butanol.6. The process for producing C-Calcohols according to claim 5 , wherein the catalyst is reduced using a reducing agent prior to contact with the synthesis gas.7. The process for producing C-Calcohols according to claim 5 , wherein at least a portion of the synthesis gas is converted to methanol.8. The process for producing C-Calcohols according to claim 5 , wherein at least a portion of the synthesis gas is converted to acetaldehyde.9. The process for producing C-Calcohols according to claim 5 , wherein the ...

Подробнее
06-02-2014 дата публикации

Enhanced partially-aminated metal-organic frameworks

Номер: US20140033920A1
Принадлежит: Dow Global Technologies LLC

Described is an enhanced partially-aminated metal-organic framework comprising, or prepared from, metal cations and a synergistically effective ratio of a multi-carboxylic acid and an amino-substituted derivative of the multi-carboxylic acid, or the acceptable salts thereof, or any combination thereof; a manufactured article comprising the enhanced partially-aminated metal-organic framework; a method of preparing the enhanced partially-aminated metal-organic framework, and a method of using the enhanced partially-aminated metal-organic framework for separating carbon dioxide gas or other acid gas from an ad rem gas mixture.

Подробнее
23-09-1999 дата публикации

Polyolefin nanocomposites

Номер: WO1999047598A1
Принадлежит: The Dow Chemical Company

The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
12-08-1998 дата публикации

Process of modifying the porosity of aluminosilicates and silicas, and mesoporous compositions derived therefrom

Номер: EP0857159A1
Принадлежит: Dow Chemical Co

A process of modifying the porosity of an aluminosilicate or silica whose porosity is not amenable to modification by acid extraction. The process involves contacting said aluminosilicate or silica with an alkali aluminate, and then extracting the aluminate-treated material with an extraction agent so as to form the porosity-modified aluminosilicate or silica. The process is applicable to zeolites which are unreactive under acid extraction conditions, e.g. ferrierite, and applicable to zeolites which are structurally unstable under acid extraction conditions, such as the mineral bikitaite. Mesoporous compositions are disclosed, including a mesoporous ferrierite and a mesoporous zeolite DCM-3.

Подробнее
15-10-2002 дата публикации

Polyolefin nanocomposites

Номер: US6465543B1
Принадлежит: Dow Chemical Co

The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
02-03-2005 дата публикации

Method of preparing polyolefin nanocomposites

Номер: EP1064323B1
Принадлежит: Dow Global Technologies LLC

The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
31-10-2000 дата публикации

Polyolefin nanocomposites and method for their preparation

Номер: BR9908859A
Принадлежит: Dow Chemical Co

''NANOCOMPOSTOS DE POLIOLEFINA E MéTODO PARA SUA PREPARAçãO''. A presente invenção é um nanocomposto que é a dispersão de partículas de nanocarga derivadas de óxidos metálicos em camadas ou sais de óxidos metálicos. O nanocomposto é vantajosamente preparado primeiramente intumescendo uma argila não tratada em água, em seguida removendo a água para formar uma argila organofílica que seja dispersável em solventes orgânicos não-polares. A argila organofílica pode ser tratada com um alquil aluminoxano e subsequentemente um catalisador para formar um complexo que promova a polimerização olefínica ou estirênica e a dispersão e plaquetas. O nanocomposto pode ser preparado diretamente por polimerização in situ da olefina ou o estireno nas partículas de nanocarga sem cisalhamento, sem uma etapa de troca iónica e sem a necessidade de incorporar substituinte polares à poliolefina ou ao poliestireno.

Подробнее
23-09-1999 дата публикации

Polyolefin nanocomposites

Номер: CA2323667A1
Принадлежит: Individual

The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
01-07-2005 дата публикации

METHOD FOR PREPARING POLYOLEFINIC NANOCOMPOSEST MATERIALS.

Номер: ES2235469T3
Принадлежит: Dow Global Technologies LLC

Un método para preparar un material nanocompuesto, que comprende las etapas de: a) dispersar una arcilla hidrófila en agua para que se hinche la arcilla; b) retirar el agua de la arcilla hinchada para producir una arcilla organofílica; c) poner en contacto la arcilla organofílica con un alquilaluminoxano en presencia de un disolvente inerte para la arcilla organofílica y el alquilaluminoxano para formar un complejo de arcilla/alquilaluminoxano; d) poner en contacto el complejo con un catalizador que fomente la polimerización de la olefina para formar un complejo de arcilla/alquilaluminoxano/catalizador; y e) poner en contacto el complejo de la etapa (d) con un monómero de olefina en condiciones de polimerización para formar el material nanocompuesto. A method for preparing a nanocomposite material, comprising the steps of: a) dispersing a hydrophilic clay in water so that the clay swells; b) remove water from the swollen clay to produce an organophilic clay; c) contacting the organophilic clay with an alkylaluminoxane in the presence of an inert solvent for the organophilic clay and the alkylaluminoxane to form a clay / alkylaluminoxane complex; d) contacting the complex with a catalyst that promotes polymerization of the olefin to form a clay / alkylaluminoxane / catalyst complex; and e) contacting the complex of step (d) with an olefin monomer under polymerization conditions to form the nanocomposite material.

Подробнее
21-12-2000 дата публикации

Polyolefin nano-compounds

Номер: TR200002658T2
Принадлежит: The Dow Chemical Company

Bulus, katmanli metal oksitler veya metal oksit tuzlardan türevlestirilen nano-dolgu parçaciklarin dispersiyonu olan bir nano-bilesiktir.Nano-bilesik avantajla önce islenmemis kilin su içinde sisirilmesi, ardindan polar-olmayan organik çözücüler içinde saçilabilir bir organofilik kil meydana getirmek üzere suyun uzaktastirilmasiyla hazirlanmaktadir. Organofilik kil ardindan, olefin veya stirenik polimerizasyonu ve pihti dispersiyonunu ilerleten bir kompleks meydana getirmek üzere alkil aluminoksan ile ve ardindan katalizör ile islenebilmektedir. Nano-bilesik, nano-dolgu parçaciklarin kaydirilmasi olmaksizin, iyon degisimi basamagi olmaksizin ve polar sübstitüenleri poliolefin veya polistiren içine dahil etme geregi olmaksizin olefin veya stirenin in situ polimerizasyonuyla dogrudan hazirlanabilmektedir. The invention is a nanocomposite which is a dispersion of nano-filler particles derived from layered metal oxides or metal oxide salts. The nano-composite advantage is prepared by first sealing the unprocessed clay in water, then removing the water to form a dispersible organophilic clay in non-polar organic solvents. The organophilic clay can then be treated with alkyl aluminoxane and subsequently with the catalyst to form a complex that promotes olefin or styrenic polymerization and pihti dispersion. The nanocomposite can be prepared directly by in situ polymerization of olefin or styrene, without shifting the nano-filler particles, without ion exchange steps and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
03-01-2001 дата публикации

Polyolefin nanocomposites

Номер: EP1064323A1
Принадлежит: Dow Chemical Co

The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.

Подробнее
15-09-2000 дата публикации

Polyolefin Nano Mixtures

Номер: NO20004634D0
Принадлежит: Dow Chemical Co

Подробнее
28-10-2001 дата публикации

Polyolefin nanocomposites

Номер: HU0102111A2
Принадлежит: The Dow Chemical Co.

A jelen találmány egy polimer nanokompozit, amely réteges szerkezetűfém-oxidokból vagy fémoxid-sókból származó nanoméretű töltőanyagokdiszperziója egy polimer mátrixban. A nanokompozitot előnyösen úgyállítják elő, hogy a kezeletlen agyagot vízben duzzasztják, majd avizet eltávolítják és ily módon kapott organofil agyagot inertoldószerben egy alkil-aluminoxánnal érintkeztetik. Ezt követően akapott agyag/alkil-aluminoxán komplexet egy olefin polimerizációskatalizátorral érintkeztetik és agyag/alkil-aluminoxán/katalizátorkomplexet állítanak elő. Az utóbbi komplex alkalmas katalizátor olefinpolimer nanokompozitok előállítására. A jelen találmány szerinti nanokompozitot az olefin vagy sztirolmonomerek polimerizációja során in situ lehet előállítani, az agyagioncserés előkezelése, nagy nyíróerő alkalmazása vagy a polietilénvagy polisztirol polimer mátrix előzetes poláris kémiai módosításanélkül. Ó The present invention is a polymer nanocomposite which is a dispersion of nanosized fillers derived from layered metal oxides or metal oxide salts in a polymer matrix. The nanocomposite is preferably prepared by swelling the untreated clay in water and then removing water and contacting the organophilic clay thus obtained with an alkylaluminoxane in an inert solvent. The resulting clay / alkylaluminoxane complex is then contacted with an olefin polymerization catalyst to form a clay / alkylaluminoxane / catalyst complex. The latter complex is a suitable catalyst for the preparation of olefin polymer nanocomposites. The nanocomposite of the present invention can be prepared by in situ polymerization of olefin or styrene monomers without pretreatment of clay ion exchange, application of high shear, or prior polar chemical modification of the polyethylene or polystyrene polymer matrix. SHE

Подробнее
04-02-1997 дата публикации

Synthesis of crystalline porous solids in ammonia

Номер: US5599520A
Принадлежит: Dow Chemical Co

A process of preparing a crystalline porous solid selected from silicas and metallosilicates, such as, aluminosilicate zeolites or clathrasils. The process involves preparing a reaction mixture containing ammonia; water in a controlled concentration; a (hydrocarbyl)ammonium polysilicate hydrate salt; a mineralizer, such as ammonium fluoride; optionally, a source of a metal oxide, such as aluminum nitride; and optionally, a source of a charge-balancing cation or a structure directing agent; and maintaining the mixture at a temperature and for a time so as to produce the crystalline porous solid. A novel silica which is isostructural with zeolite P1 is prepared. Also prepared are a novel silica which is isostructural with zeolite beta and a novel TMA sodalite having a silica/alumina molar ratio between 12 and about 20.

Подробнее
06-01-2022 дата публикации

Processes for preparing c2 to c3 hydrocarbons in the presence of a hybrid catalyst

Номер: CA3184129A1
Принадлежит: Dow Global Technologies LLC

A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings less than or equal to 5.1 A and a cage defining ring size less than or equal to 7.45 A, where a C2/C3 carbon molar ratio of the product stream is greater than or equal to 0.7.

Подробнее
05-05-2011 дата публикации

Supported rhodium synthesis gas conversion catalyst compositions

Номер: WO2011053953A2
Принадлежит: Dow Global Technologies LLC

A supported catalyst composition suitable for use in converting synthesis gas to alcohols comprises a catalytic metal, a catalyst promoter and a catalyst support.

Подробнее
01-07-2021 дата публикации

Methods for preparing microcapillary carbon molecular sieve membranes

Номер: CA3162835A1
Принадлежит: Dow Global Technologies LLC

A process for preparing a microcapillary carbon molecular sieve membrane may include extruding a polyvinylidene chloride polymer to a thickness from 10 ?m to 1,000 ?m to form an extruded polymeric microcapillary film, wherein the extruded polymeric microcapillary film comprises a first end, a second end, and one or more microcapillaries extending from the first end to the second end; pre-treating the extruded polymeric microcapillary film at a temperature from 100 °C to 200 °C for a time from 1 hour to 48 hours to form a pre-treated polymeric microcapillary film; and pyrolizing the pre-treated polymeric microcapillary film at a temperature from 200 °C to 1,500 °C for a time from 15 minutes to 5 hours to form the microcapillary carbon molecular sieve membrane.

Подробнее
19-06-2020 дата публикации

Polyisocyanurate foams containing dispersed non-porous silica particles

Номер: ES2768124T3
Принадлежит: Dow Global Technologies LLC

Un método de preparación de una espuma de poliisocianato retardante de la llama cargada con sílice derivada de espumas celulares mesoporosas, que comprende: a) combinar dos o más precursores de poliisocianurato para formar una primera mezcla; b) combinar la primera mezcla y una espuma celular mesoporosa basada en sílice, que tiene un volumen de poro mayor de 2,0 cm3/g y una superficie específica de más de 400 m2/g, como se mide según los métodos descritos en la descripción, para formar una segunda mezcla; incluyendo la segunda mezcla 0,1-10% en peso de espuma celular mesoporosa y 99,9-90% en peso de precursores de poliisocianurato; c) polimerizar la segunda mezcla y generar por ello partículas de sílice que tiene un volumen de poro de menos de 0,2 cm3/g, como se mide según el método descrito en la descripción; en el que se añade un agente espumante a la primera mezcla, a la segunda mezcla, o a ambas.

Подробнее
03-05-2023 дата публикации

Processes for preparing c2 to c3 hydrocarbons in the presence of a hybrid catalyst

Номер: EP4172131A1
Принадлежит: Dow Global Technologies LLC

A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings less than or equal to 5.1 A and a cage defining ring size less than or equal to 7.45 A, where a C2/C3 carbon molar ratio of the product stream is greater than or equal to 0.7.

Подробнее
20-01-1999 дата публикации

Synthesis of crystalline porous solids in ammonia

Номер: EP0789668B1
Принадлежит: Dow Chemical Co

Подробнее
06-01-2022 дата публикации

Processes for preparing c2 to c3 hydrocarbons in the presence of a hybrid catalyst

Номер: WO2022005770A1
Принадлежит: Dow Global Technologies LLC

A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings less than or equal to 5.1 A and a cage defining ring size less than or equal to 7.45 A, where a C2/C3 carbon molar ratio of the product stream is greater than or equal to 0.7.

Подробнее
19-12-2012 дата публикации

Metal organic framework filled polymer based membranes

Номер: EP2533881A1
Принадлежит: Dow Global Technologies LLC

A membrane for separation of gases, the membrane including a metal-organic phase and a polymeric phase, the metal-organic phase having porous crystalline metal compounds and ligands, the polymeric phase having a molecularly self assembling polymer.

Подробнее
04-10-2012 дата публикации

Catalysts for the conversion of synthesis gas to alcohols

Номер: WO2012134493A1
Принадлежит: Dow Global Technologies LLC

A catalyst for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminium, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.

Подробнее
03-02-2022 дата публикации

Method of producing carbon molecular sieve membranes

Номер: WO2022026136A1
Принадлежит: Dow Global Technologies LLC

A method of forming a carbon molecular sieve membrane includes dissolving a halogenated precursor polymer in a solvent, thereby forming a dissolved halogenated precursor polymer. Homogeneously dehydrohalogenating the dissolved halogenated precursor polymer with an organic amine base to form a partially dehydrohalogenated polymer. Forming a thin film from the partially dehydrohalogenated polymer. Pyrolyzing the thin film to form the carbon molecular sieve membrane.

Подробнее
07-09-2023 дата публикации

Method of producing carbon molecular sieve membranes

Номер: US20230278006A1
Принадлежит: Dow Global Technologies LLC

A method of forming a carbon molecular sieve membrane includes dissolving a halogenated precursor polymer in a solvent, thereby forming a dissolved halogenated precursor polymer. Homogeneously dehydrohalogenating the dissolved halogenated precursor polymer with an organic amine base to form a partially dehydrohalogenated polymer. Forming a thin film from the partially dehydrohalogenated polymer. Pyrolyzing the thin film to form the carbon molecular sieve membrane.

Подробнее
31-05-2002 дата публикации

Process of modifying the porosity of aluminosilicates and silicas and mesoporous compositions derived therefrom

Номер: MY113817A
Принадлежит: Dow Chemical Co

A PROCESS OF MODIFYING THE POROSITY OF AN ALUMINOSILICATE OR SILICA WHOSE POROSITY IS NOT AMENABLE TO MODIFICATION BY ACID EXTRACTION. THE PRGCESS INVOLVES CONTACTING SAID ALUMINOSILICATE OR SILICA WITH AN ALKALI ALUMINATE, AND THEN EXTRACTING THE ALUMINATE-TREATED MATERIAL WITH AN EXTRACTION AGENT SO AS TO FORM THE POROSITY-MODIFIED ALUMINOSILICATE OR SILICA. THE PROCESS IS APPLICABLE TO ZEOLITES WHICH ARE UNREACTIVE UNDER ACID EXTRACTION CONDITIONS, E.G. FERRIERITE, AND APPLICABLE TO ZEOLITES WHICH ARE STRUCTURALLY UNSTABLE UNDER ACID EXTRACTION CONDITIONS, SUCH AS THE MINERAL BIKITAITE. MESOPOROUS COMPOSITIONS ARE DISCLOSED, INCLUDING A MESOPOROUS FERRIERITE AND A MESOPOROUS ZEOLITE DCM-3.

Подробнее
03-02-2022 дата публикации

Method of producing carbon molecular sieve membranes

Номер: CA3187500A1
Принадлежит: Dow Global Technologies LLC

A method of forming a carbon molecular sieve membrane includes dissolving a halogenated precursor polymer in a solvent, thereby forming a dissolved halogenated precursor polymer. Homogeneously dehydrohalogenating the dissolved halogenated precursor polymer with an organic amine base to form a partially dehydrohalogenated polymer. Forming a thin film from the partially dehydrohalogenated polymer. Pyrolyzing the thin film to form the carbon molecular sieve membrane.

Подробнее
31-01-2023 дата публикации

Processo para preparar hidrocarbonetos c2 a c3

Номер: BR112022024723A2
Принадлежит: Dow Global Technologies LLC

PROCESSO PARA PREPARAR HIDROCARBONETOS C2 A C3. Trata-se de um processo para a preparação de hidrocarbonetos C2 a C3 que pode incluir a introdução de uma corrente de alimentação que inclui gás hidrogênio e um gás contendo carbono compreendendo monóxido de carbono, dióxido de carbono e mistura dos mesmos a uma zona de reação de um reator, e a conversão da corrente de alimentação em uma corrente de produto que compreende hidrocarbonetos C2 a C3 na zona de reação na presença de um catalisador híbrido. O catalisador híbrido pode incluir um componente catalisador de óxido de metal e um componente catalisador microporoso que compreende aberturas de poro de 8-MR e pode ser derivado de um mineral natural, a corrente de produto compreende uma C combinada2 e C3 seletividade maior que 40% em mol de carbono.

Подробнее
30-05-2024 дата публикации

Processes for preparing c2 to c3 hydrocarbons in the presence of a hybrid catalyst

Номер: ZA202301053B
Принадлежит: Dow Global Technologies LLC

A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings less than or equal to 5.1 A and a cage defining ring size less than or equal to 7.45 A, where a C2/C3 carbon molar ratio of the product stream is greater than or equal to 0.7.

Подробнее
03-05-2023 дата публикации

Processes for preparing c2 to c3 hydrocarbons

Номер: EP4172130A1
Принадлежит: Dow Global Technologies LLC

A process for preparing C2 to C3 hydrocarbons may include introducing a feed stream including hydrogen gas and a carbon-containing gas comprising carbon monoxide, carbon dioxide, and mixtures thereof into a reaction zone of a reactor, and converting the feed stream into a product stream comprising C2 to C3 hydrocarbons in the reaction zone in the presence of a hybrid catalyst. The hybrid catalyst may include a metal oxide catalyst component and a microporous catalyst component comprising 8-MR pore openings and may be derived from a natural mineral, the product stream comprises a combined C2 and C3 selectivity greater than 40 carbon mol%.

Подробнее
20-06-2024 дата публикации

Carbon molecular sieves and methods for making the same

Номер: WO2024129530A1
Принадлежит: Dow Global Technologies LLC

Method for making a carbon molecular sieves described herein may include applying an adhesive to exterior surfaces of polymeric hollow fibers at a first end of a plurality of polymeric hollow fibers, wherein the polymeric hollow fibers include polyimide, polyvinylidene chloride, or a combination thereof, and wherein the adhesive includes at least 75 wt.% polyimide, polyvinylidene chloride, or a combination thereof, based on the total weight of the adhesive; curing the adhesive on the exterior surfaces of the polymeric hollow fibers to form a carbon molecular sieve precursor; and pyrolyzing the carbon molecular sieve precursor to form a carbon molecular sieve, wherein the carbon molecular sieve includes a plurality of carbon hollow fibers and a carbonaceous adhesive residue on a first end of the plurality of carbon fibers.

Подробнее
02-06-2022 дата публикации

Aspherical hollow silica particles as spf boosters

Номер: WO2022094022A3
Принадлежит: Dow Global Technologies LLC

Described herein are aspherica! hollow silica particles, processes for making asphericai holiow silica particles, and uses of asphericai hollow silica particles in sun care compositions. To form the asphericai hollow silica particles, deposition of a siiica sheli on a calcium carbonate template using a sol-gel chemistry is employed. Subsequent dissolution of the calcium carbonate template forms voids (e.g., a hollow interior) in the asphericai hollow silica particles.

Подробнее
22-08-2024 дата публикации

Self-supported carbon molecular sieve membranes and methods for using the same

Номер: WO2024173056A1
Принадлежит: Dow Global Technologies LLC

A method of manufacturing a self-supported carbon molecular sieve (CMS) membrane may include forming a polyvinylidene chloride (PVDC) copolymer into one or more hollow fibers or a micro capillary film; pretreating the one or more hollow fibers or the micro capillary film by heating at a first temperature of from 120 ℃ to 200 ℃ with air, an inert gas, or both; pyrolyzing the one or more hollow fibers or the micro capillary film at a second temperature of from 600 ℃ to 1100 ℃ with the inert gas; and oxidizing the one or more hollow fibers or the micro capillary film at a third temperature of from 300 ℃ to 500 ℃ with air.

Подробнее
30-08-2012 дата публикации

Enhanced partially-aminated metal-organic frameworks

Номер: WO2012115890A2
Принадлежит: Dow Global Technologies LLC

Described is an enhanced partially-aminated metal-organic framework comprising, or prepared from, metal cations and a synergistically effective ratio of a multi-carboxylic acid and an amino-substituted derivative of the multi-carboxylic acid, or the acceptable salts thereof, or any combination thereof; a manufactured article comprising the enhanced partially-aminated metal-organic framework; a method of preparing the enhanced partially-aminated metal-organic framework, and a method of using the enhanced partially-aminated metal-organic framework for separating carbon dioxide gas or other acid gas from an ad rem gas mixture.

Подробнее
22-08-2024 дата публикации

Carbon molecular sieve membranes, methods of manufacturing, and use thereof

Номер: WO2024173303A1
Принадлежит: Dow Global Technologies LLC

A method of manufacturing a carbon molecular sieve (CMS) membrane may comprise forming a copolymer into one or more hollow fibers or one or more microcapillary films, the copolymer selected from one or more of a polyvinylidene chloride (PVDC) copolymer, a polyimide copolymer, polyetherimide copolymer, a polyacrylonitrile copolymer, and a poly(phenylene oxide) copolymer; pyrolyzing the one or more hollow fibers or the one or more microcapillary films at a second temperature of from 600 ℃ to 700 ℃ with inert gas or under vacuum; and annealing the one or more hollow fibers or the one or more microcapillary films at a third temperature of from 900 ℃ to 1500 ℃ with inert gas or under vacuum; oxidizing the one or more hollow fibers or the one or more microcapillary films at a fourth temperature of from 300 ℃ to 400 ℃ with air.

Подробнее
22-08-2024 дата публикации

Carbon molecular sieve membranes, methods of manufacturing, and use thereof

Номер: WO2024173306A1
Принадлежит: Dow Global Technologies LLC

A method of manufacturing a carbon molecular sieve (CMS) membrane may comprise forming a copolymer into one or more hollow fibers or one or more microcapillary films, the copolymer selected from one or more of a polyvinylidene chloride (PVDC) copolymer, a polyimide copolymer, polyetherimide copolymer, a polyacrylonitrile copolymer, and a poly(phenylene oxide) copolymer; pyrolyzing the one or more hollow fibers or the one or more microcapillary films at a second temperature of from 600 ℃ to 700 ℃ with inert gas or under vacuum; annealing the one or more hollow fibers or the one or more microcapillary films at a third temperature of from 900 ℃ to 1500 ℃ with inert gas or under vacuum; oxidizing the one or more hollow fibers or the one or more microcapillary films at a fourth temperature of from 700 ℃ to 900 ℃ with carbon dioxide.

Подробнее
14-12-2023 дата публикации

Aspherical hollow silica particles as spf boosters

Номер: US20230398044A1

Described herein are aspherical hollow silica particles, processes for making aspherical hollow silica particles, and uses of aspherical hollow silica particles in sun care compositions. To form the aspherical hollow silica particles, deposition of a silica shell on a calcium carbonate template using a sol-gel chemistry is employed. Subsequent dissolution of the calcium carbonate template forms voids (e.g., a hollow interior) in the aspherical hollow silica particles.

Подробнее
06-09-2023 дата публикации

Aspherical hollow silica particles as spf boosters

Номер: EP4236906A2

Described herein are aspherica! hollow silica particles, processes for making asphericai holiow silica particles, and uses of asphericai hollow silica particles in sun care compositions. To form the asphericai hollow silica particles, deposition of a siiica sheli on a calcium carbonate template using a sol-gel chemistry is employed. Subsequent dissolution of the calcium carbonate template forms voids (e.g., a hollow interior) in the asphericai hollow silica particles.

Подробнее
21-07-2022 дата публикации

Aspherical hollow silica particles as spf boosters

Номер: WO2022094022A8

Described herein are aspherica! hollow silica particles, processes for making asphericai holiow silica particles, and uses of asphericai hollow silica particles in sun care compositions. To form the asphericai hollow silica particles, deposition of a siiica sheli on a calcium carbonate template using a sol-gel chemistry is employed. Subsequent dissolution of the calcium carbonate template forms voids (e.g., a hollow interior) in the asphericai hollow silica particles.

Подробнее