Analyte sensor
04-05-2021 дата публикации
Номер:
US0010993642B2
Автор: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin, SIMPSON PETER C, BRAUKER JAMES H, BRISTER MARK C, GOODE JR PAUL V, KAMATH APURV ULLAS, MAHALINGAM AARTHI, PRYOR JACK, WIGHTLIN MATTHEW D, Simpson, Peter C., Brauker, James H., Brister, Mark C., Goode, Jr., Paul V., Kamath, Apurv Ullas, Mahalingam, Aarthi, Pryor, Jack, Wightlin, Matthew D.
Принадлежит: DexCom, Inc., DEXCOM INC
Контакты:
Номер заявки: 46-84-1708
Дата заявки: 03-11-2020


















































CPC - классификация
AA6A61A61BA61B1A61B17A61B17/A61B17/3A61B17/34A61B17/346A61B17/3468A61B2A61B20A61B201A61B2017A61B2017/A61B2017/3A61B2017/34A61B2017/349A61B2017/3492A61B25A61B256A61B2560A61B2560/A61B2560/0A61B2560/02A61B2560/022A61B2560/0223A61B2560/04A61B2560/045A61B2560/06A61B2560/063A61B2562A61B2562/A61B2562/1A61B2562/18A61B5A61B5/A61B5/0A61B5/00A61B5/000A61B5/0002A61B5/0004A61B5/003A61B5/0031A61B5/05A61B5/1A61B5/14A61B5/141A61B5/1411A61B5/145A61B5/1450A61B5/14503A61B5/14507A61B5/1451A61B5/14514A61B5/1453A61B5/14532A61B5/1454A61B5/14546A61B5/146A61B5/1468A61B5/147A61B5/1473A61B5/14735A61B5/148A61B5/1486A61B5/14865A61B5/149A61B5/1495A61B5/15A61B5/150A61B5/1500A61B5/15002A61B5/150022A61B5/6A61B5/68A61B5/680A61B5/6801A61B5/683A61B5/6833A61B5/68335A61B5/684A61B5/6848A61B5/6849A61B5/7A61B5/72A61MA61M2A61M20A61M200A61M2005A61M2005/A61M2005/1A61M2005/15A61M2005/158A61M2005/1585A61M5A61M5/A61M5/1A61M5/14A61M5/142A61M5/1424A61M5/14244A61M5/17A61M5/172A61M5/1723YY0Y02Y02AY02A9Y02A90Y02A90/Y02A90/1Y02A90/10IPC - классификация
AA6A61A61BA61B1A61B17A61B17/A61B17/3A61B17/34A61B5A61B5/A61B5/0A61B5/00A61B5/05A61B5/1A61B5/14A61B5/145A61B5/1451A61B5/14514A61B5/1453A61B5/14532A61B5/146A61B5/1468A61B5/147A61B5/1473A61B5/148A61B5/1486A61B5/149A61B5/1495A61B5/15A61B5/150A61B5/1500A61B5/15002A61B5/150022A61MA61M5A61M5/A61M5/1A61M5/14A61M5/142A61M5/15A61M5/158A61M5/17A61M5/172Цитирование НПИ
ASTM International, Inc., “ASTM, Designation: D2240-05, Standard Test Method for Rubber Property—Durometer Hardness,” 2005, 13 pages.Aalders, et al., “Development of a Wearable Glucose Sensor; Studies in Healthy Volunteers and in Diabetic Patients,” The International Journal of Artificial Organs, 1991, vol. 14, No. 2, pp. 102-108.
Abe, et al., “Characterization of Glucose Microsensors for Intracellular Measurements,” Analytical Chemistry, 1992, vol. 64, No. 18, pp. 2160-2163.
Abel, et al., “Biosensors for in Vivo Glucose Measurements: Can We Cross the Experimental Stage,” Biosensors & Bioelectronics, 2002, vol. 17, pp. 1059-1070.
Abel, et al., “Experience With an Implantable Glucose Sensor as a Prerequisite of an Artificial Beta Cell,” Biomed. Biochim. Actan, 1984, vol. 43, No. 5, pp. 577-584.
Adilman, et al., “Videogames: Knowing the Score, Creative Computing,” Dec. 1983, Dialog: File 148; IAC Trade & Industry Database, vol. 9, p. 224(5) (9 pages).
Alberts B., et al., “Molecular Biology of the Cell,” 3rd edition, 1994, p. G19 (3 pages).
Alcock S.J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice,” IEEE Engineering in Medicine & Biology, 1994, vol. 13, pp. 319-325.
Amato, et al., “Experience with the Polytetrafluoroethylene Surgical Membrane for Pericardial Closure in Operations for Congenital Cardiac Defects,” Journal of Thoracic and Cardiovascular Surgery, 1989, vol. 97, pp. 929-934.
Amer M.M.B., “An Accurate Amperometric Glucose Sensor Based Glucometer with Eliminated Cross-Sensitivity,” Journal of Medical Engineering & Technology, vol. 26 (5), Sep./Oct. 2002, pp. 208-213.
Amin R., et al., “Hypoglycemia Prevalence in Prepubertal Children With Type 1 Diabetes on Standard Insulin Regimen: Use of Continuous Glucose Monitoring System,” Diabetes Care, 2003, vol. 26, No. 3, pp. 662-667.
Armour J.C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs,” Diabetes, Dec. 1990, vol. 39, pp. 1519-1526.
Asberg P., et al., “Hydrogels of a Conducting Conjugated Polymer as 3-D Enzyme Electrode,” Biosensors Bioelectronics, 2003, vol. 19, pp. 199-207.
Asker.Co.JP, “What is durometer?,” /Product/, Kobunshi Keiki Co., Ltd. retrieved from http://www.asker.co.jp/en/products/durometer/analog/about/index.html on May 9, 2018, 2 pages.
Assolant-Vinet C.H., et al., “New Immobilized Enzyme Membranes for Tailor-Made Biosensors,” Analytical Letters, 1986, vol. 19(7&8), pp. 875-885.
Atanasov P., et al., “Biosensor for Continuous Glucose Monitoring,” Biotechnology and Bioengineering, John Wiley & sons Inc, 1994, vol. 43, pp. 262-266.
Atanasov P., et al., “Implantation of a Refillable Glucose Monitoring-Telemetry Device,” Biosensors and Bioelectronics, vol. 12 (7), 1997, pp. 669-680.
Aussedat B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycaemic Alarm,” Elsevier Science Limited, Biosensors & Bioelectronic, 1997, vol. 12, No. 11, pp. 1061-1071.
Bailey T.S., et al., “Reduction in Hemoglobin A1C with Real-Time Continuous Glucose Monitoring: Results from a 12-Week Observational Study,” Diabetes Technology & Therapeutics, vol. 9 (3), 2007, pp. 203-210.
Baker D.A., et al., “Dynamic Concentration Challenges for Biosensor Characterization,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 433-441.
Baker D.A., et al., “Dynamic Delay and Maximal Dynamic Error in Continuous Biosensors,” Analytical Chemistry, vol. 68 (8), Apr. 15, 1996, pp. 1292-1297.
Bard A.J., et al., “Electrochemical Methods,” Fundamentals and Applications, John Wiley & Sons, New York, 1980, pp. 173-175.
Bardeletti G., et al., “A Reliable L-Lactate Electrode with a New Membrane for Enzyme Immobilization for Amperometric Assay of Lactate,” Analytica Chemica Acta, vol. 187, 1986, pp. 47-54.
Beach R.D., et al., “Subminiature Implantable Potentiostat and Modified Commercial Telemetry Device for Remote Glucose Monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 48 (6), Dec. 1999, pp. 1239-1245.
Bellucci F., et al., “Electrochemical Behaviour of Graphite-Epoxy Composite Materials (GECM) in Aqueous Salt Solutions,” Journal of Applied Electrochemistry, vol. 16 (1), Jan. 1986, pp. 15-22.
Bergveld, et al., “Fabrication and Mass Production,” Advances in Biosensors, Supplement 1, Chapter 6, 1993, pp. 165-186.
Bertrand C., et al., “Multipurpose Electrode with Different Enzyme Systems Bound to Collagen Films,” Analytica Chemica Acta, 1981, vol. 126, pp. 23-34.
Bessman S.P., et al., “Progress toward a Glucose Sensor for the Artificial Pancreas,” Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973, Boston University, 1973, pp. 189-197.
Biermann E., et al., “How Would Patients Behave if they were Continually Informed of their Blood Glucose Levels? A Simulation Study Using a “Virtual” Patient,” Diabetes Technology & Therapeutics, vol. 10 (3), 2008, pp. 178-187.
Bindra D.S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring,” Analytical Chemistry, vol. 63, Sep. 1, 1991, pp. 1692-1696.
Bindra D.S., et al., “Pulsed Amperometric Detection of Glucose in Biological Fluids at a Surface-Modified Gold Electrode,” Analytical Chemistry, vol. 61 (22), Nov. 15, 1989, pp. 2566-2570.
Bisenberger M., et al., “A Triple-Step Potential Waveform at Enzyme Multisensors with Thick-Film Gold Electrodes for Detection of Glucose and Sucrose,” Sensors and Actuators B, vol. 28, 1995, pp. 181-189.
Bland J.M., et al., “A Note on the Use of the Intraclass Correlation Coefficient in the Evaluation of Agreement between Two Methods of Measurement,” Computers in Biology and Medicine, vol. 20 (5), 1990, pp. 337-340.
Bland J.M., et al., “Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement,” The Lancet, Feb. 8, 1986, pp. 307-310.
Bobbioni-Harsch E., et al., “Lifespan of Subcutaneous Glucose Sensors and their Performances during Dynamic Glycaemia Changes in Rats,” J. Biomed. Eng., vol. 15, 1993, pp. 457-463.
Bode B.W., et al., “Continuous Glucose Monitoring Used to Adjust Diabetes Therapy Improves Glycosylated Hemoglobin: A Pilot Study,” Diabetes Research and Clinical Practice, vol. 46, 1999, pp. 183-190.
Bode B.W., et al., “Using the Continuous Glucose Monitoring System to Improve the Management of Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S43-S48.
Bode B.W., “Clinical Utility of the Continuous Glucose Monitoring System,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S35-S41.
Boedeker Plastics Inc, “Polyethylene Specifications,” Polyethylene Data Sheet, Retrieved from http://www.boedeker.com/polye.sub.--p. htm on Aug. 19, 2009, 4 pages.
Boland E., et al., “Limitations of Conventional Methods of Self-Monitoring of Blood Glucose,” Diabetes Care, vol. 24 (11), Nov. 2001, pp. 1858-1862.
Bolinder J., et al., “Microdialysis Measurement of the Absolute Glucose Concentration in Subcutaneous Adipose Tissue Allowing Glucose Monitoring in Diabetic Patients,” Rapid Communication, Diabetologia, vol. 35, 1992, pp. 1177-1180.
Bolinder J., et al., “Self-Monitoring of Blood Glucose in Type I Diabetic Patients: Comparison with Continuous Microdialysis Measurements of Glucose in Subcutaneous Adipose Tissue during Ordinary Life Conditions,” Diabetes Care, vol. 20 (1), Jan. 1997, pp. 64-70.
Bott A.W., “A Comparison of Cyclic Voltammetry and Cyclic Staircase Voltammetry,” Current Separations, vol. 16 (1), 1997, pp. 23-26.
Bott A.W., “Electrochemical Methods for the Determination of Glucose,” Current Separations, vol. 17 (1), 1998, pp. 25-31.
Bowman L., et al., “The Packaging of Implantable Integrated Sensors,” IEEE Transactions in Biomedical Engineering, vol. BME-33 (2), Feb. 1986, pp. 248-255.
Brauker J H., et al., “Neovascularization of Synthetic Membranes Directed by Membrane Microarchitecture,” Journal of Biomedical Material Research, 1995, vol. 29, pp. 1517-1524.
Brauker J., et al., “Local Inflammatory Response Around Diffusion Chambers Containing Xenografts,” Transplantation, vol. 61 (12), Jun. 27, 1996, pp. 1671-1677.
Brauker J., “Unraveling Mysteries at the Biointerface: Molecular Mediator of Inhibition of Blood Vessel Formation in the Foreign Body Capsule Revealed,” SurFACTS in Biomaterials, vol. 6 (3), 2001, pp. 1,5.
Brauker, et al., “Sustained Expression of High Levels of Human Factor IX from Human Cells Implanted within an Immunoisolation Device into Athymic Rodents,” Human Gene Therapy, Apr. 10, 1998, vol. 9, pp. 879-888.
Braunwald E., “Biomarkers in Heart Failure,” Medical Progress, The New England Journal of Medicine, vol. 358, May 15, 2008, pp. 2148-2159.
Bremer T., et al., “Is Blood Glucose Predictable from Previous Values? A Solicitation for Data,” Perspectives in Diabetes, vol. 48, Mar. 1999, pp. 445-451.
Bremer T.M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies,” Diabetes Technology & Therapeutics, vol. 3 (3), 2001, pp. 409-418.
Brooks S.L., et al., “Development of an On-line Glucose Sensor for Fermentation Monitoring,” Biosensors, vol. 3, 1987/1988, pp. 45-56.
Bruckel J., et al., “In Vivo Measurement of Subcutaneous Glucose Concentrations with an Enzymatic Glucose Sensor and a Wick Method,” Klin Wochenschr, vol. 67, 1989, pp. 491-495.
Brunner G.A., et al., “Validation of Home Blood Glucose Meters with Respect to Clinical and Analytical Approaches,” Diabetes Care, vol. 21, No. 4, Apr. 1998, pp. 585-590.
Brunstein E., et al., “Preparation and Validation of Implantable Electrodes for the Measurement of Oxygen and Glucose,” Biomed Biochim. Acta, vol. 48 (11/12), 1989, pp. 911-917.
Cai Q., et al., “A Wireless, Remote Query Glucose Biosensor Based on a pH-Sensitive Polymer,” Analytical Chemistry, vol. 76 (14), Jul. 15, 2004, pp. 4038-4043.
Cameron T., et al., “Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs,” IEEE Transactions on Biomedical Engineering, vol. 44 (9), Sep. 1997, pp. 781-790.
Campanella L., et al., “Biosensor for Direct Determination of Glucose and Lactate in Undiluted Biological Fluids,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 307-314.
Candas B., et al., “An Adaptive Plasma Glucose Controller Based on a Nonlinear Insulin/Glucose Model,” IEEE Transactions on Biomedical Engineering, vol. 41 (2), Feb. 1994, pp. 116-124.
Cass A.E.G., et al., “Ferrocene-Mediated Enzyme Electrodes for Amperometric Determination of Glucose,” Analytical Chemistry, vol. 56 (4), Apr. 1984, pp. 667-671.
Cassidy J.F., et al., “Novel Electrochemical Device for the Detection of Cholesterol or Glucose,” Analyst, vol. 118, Apr. 1993, pp. 415-418.
Chase H.P., et al., “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics, vol. 107 (2), Feb. 2001, pp. 222-226.
Chatterjee G., et al., “Poly(ether urethane) and Poly(ether urethane urea) Membranes with High H2S/CH4 Selectivity,” Journal of Membrane Science, vol. 135, 1997, pp. 99-106.
Chen C., et al., “A Noninterference Polypyrrole Glucose Biosensor,” Biosensors and Bioelectronics, vol. 22, 2006, pp. 639-643.
Chen T., et al., “Defining the Period of Recovery of the Glucose Concentration after its Local Perturbation by the Implantation of a Miniature Sensor,” Clinical Chemistry and Laboratory Medicine, vol. 40 (8), 2002, pp. 786-789.
Chia C.W., et al., “Glucose Sensors: Toward Closed Loop Insulin Delivery,” Endocrinology and Metabolism Clinics of North America, vol. 33, 2004, pp. 175-195.
Choleau C., et al., “Calibration of a Subcutaneous Amperometric Glucose Sensor Implanted for 7 Days in Diabetic Patients Part 2. Superiority of the One-point Calibration Method,” Biosensors and Bioelectronics, vol. 17 (8), 2002, pp. 647-654.
Choleau C., et al., “Calibration of a Subcutaneous Amperometric Glucose Sensor Part 1. Effect of Measurement Uncertainties on the Determination of Sensor Sensitivity and Background Current,” Biosensors and Bioelectronics, vol. 17, 2002, pp. 641-646.
Ciba Specialty Chemicals, “Ciba® IRGACURE® 2959,” Coating Effects Segment, Photoinitiator Product Description, Basel Switzerland, Apr. 2, 1998, 3 pages.
Claremont D.J., et al., “Potentially-Implantable, Ferrocene-Mediated Glucose Sensor,” Journal of Biomedical Engineering, vol. 8, Jul. 1986, pp. 272-274.
Claremont D.J., et al., “Subcutaneous Implantation of a Ferrocene-Mediated Glucose Sensor in Pigs,” Diabetologia, vol. 29, 1986, pp. 817-821.
Clark L.C., et al., “Configurational Cyclic Voltammetry: Increasing the Specificity and Reliability of Implanted Electrodes,” IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society, 1987, pp. 0782-0783.
Clark L.C., et al., “Long-Term Stability of Electroenzymatic Glucose Sensors Implanted in Mice,” vol. XXXIV, Transactions—American Society for Artificial Internal Organs, 1988, vol. 34, pp. 259-265.
Clark L.C., et al., “One-Minute Electrochemical Enzymic Assay for Cholesterol in Biological Materials,” Clinical Chemistry, vol. 27 (12), 1981, pp. 1978-1982.
Clarke W.L., et al., “Evaluating Clinical Accuracy of Systems for Self Monitoring of Blood Glucose,” Technical Articles, Diabetes Care, vol. 10 (5), Sep.-Oct. 1987, pp. 622-628.
Clarke W.L., et al., “Evaluating the Clinical Accuracy of Two Continuous Glucose Sensors Using Continuous Glucose-Error Grid Analysis,” Emerging Treatment and Technologies, Diabetes Care, vol. 28(10), Oct. 2005, pp. 2412-2417.
Colangelo V.J., et al., “Corrosion Rate Measurements in Vivo,” Journal of Biomedical Materials Research, vol. 1, 1967, pp. 405-414.
Colowick S.P., et al., “Methods in Enzymology,” vol. XLIV, Immobilized Enzymes, Edited by Mosbach K, New York Academic Press, 1976, 11 pages.
Communication pursuant to Rules 70(2) and 70a(2) EPC for European Application No. 20190044.6, dated Jan. 15, 2021, 2 pages.
Copeland J.G., et al., “Synthetic Membrane Neo-Pericardium Facilitates Total Artificial Heart Explanation,” The Journal of Heart Lung Transplantation, vol. 20(6), Jun. 2001, pp. 654-656.
Coulet P.R., et al., “Enzymes Immobilized on Collagen Membranes: A Tool for Fundamental Research and Enzyme Engineering,” Journal of Chromatography, vol. 215, 1981, pp. 65-72.
Coulet P.R., “Polymeric Membranes and Coupled Enzymes in the Design of Biosensors,” Journal of Membrane Science, 1992, vol. 68, pp. 217-228.
Cox D.J., et al., “Accuracy of Perceiving Blood Glucose in IDDM,” Diabetes Care, vol. 8 (6), Nov.-Dec. 1985, pp. 529-536.
Csoregi E., et al., “Amperometric Microbiosensors for Detection of Hydrogen Peroxide and Glucose Based on Peroxidase-Modified Carbon Fibers,” Electroanalysis, vol. 6, 1994, pp. 925-933.
Csoregi E., et al., “Design, Characterization and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode,” American Chemical Society, Analytical Chemistry, vol. 66 (19), Oct. 1, 1994, pp. 3131-3138.
Currie J.F., et al., “Novel Non-Intrusive Trans-Dermal Remote Wireless Micro-Fluidic Monitoring System Applied to Continuous Glucose and Lactate Assays for Casualty Care and Combat Readiness Assessment,” RTO HFM Symposium, RTO-MP-HFM-109, Aug. 16-18, 2004, pp. ‘24-1’-‘24-18’.
D'Arrigo G., et al., “Porous-Si Based Bio Reactors for Glucose Monitoring and Drugs Production,” Proceedings of SPIE, 2003, vol. 4982, pp. 178-184.
Dai W.S., et al., “Hydrogel Membranes with Mesh Size Asymmetry based on the Gradient Crosslinking of Poly(Vinyl Alcohol),” Journal of Membrane Science, 1999, vol. 156, pp. 67-79.
Danielsson B., et al., “Enzyme Thermistors,” Methods in Enzymology, vol. 137, 1988, pp. 181-197.
Dassau E., et al., “In Silico Evaluation Platform for Artificial Pancreatic β-Cell Development—A Dynamic Simulator for Closed-Loop Control with Hardware-in-the-loop,” Diabetes Technology & Therapeutics, vol. 11 (3), 2009, pp. 1-8.
Dassau E., et al., “Real-Time Hypoglycemia Prediction Suite Using Continuous Glucose Monitoring,” Emerging Treatment and Technologies, Diabetes Care, vol. 33 (6), Jun. 2010, pp. 1249-1254.
Davies M.L., et al., “Polymer Membranes in Clinical Sensor Applications,” An overview of membrane function, Biomaterials, vol. 13 (14), 1992, pp. 971-978.
Davis G., et al., “Bioelectrochemical Fuel Cell and Sensor Based on a Quinoprotein, Alcohol Dehydrogenase,” Enzyme and Microbial Technology, vol. 5 (5), Sep. 1983, pp. 383-388.
Declaration presented during Opposition proceedings EP2407094, Pace L., Nov. 13, 2015, 6 pages.
Declaration presented during Opposition proceedings EP2407094, Schoonmaker R., Dec. 14, 2015, 10 pages.
Definition of plunger: https://www.merriam-webster.com/dictionary/plunger, dated Nov. 7, 2016, 2 pages.
Deutsch T., et al., “Time Series Analysis and Control of Blood Glucose Levels in Diabetic Patients,” Computer Methods and Programs in Biomedicine, Elsevier Scientific Publishers, vol. 41, 1994, pp. 167-182.
Dixon B.M., et al., “Characterization in Vitro and in Vivo of the Oxygen Dependence of an Enzyme/Polymer Biosensor for Monitoring Brain Glucose,” Journal of Neuroscience Methods, vol. 119, 2002, pp. 135-142.
Dobson D.E., et al.,“1-Butyrul-Glycerol: A Novel Angiogenesis Factor Secreted by Differentiating Adipocytes,” Cell, Apr. 20, 1990, vol. 61 (2), pp. 223-230.
DuPont, “Dimension® AR Clinical Chemistry System,” The Chemistry Analyzer that Makes the most of your Time, Money and Effort, Dade International, Chemistry Systems, Newark, 1998, 18 pages.
Durliat H., et al., “Spectrophotometric and Electrochemical Determinations of L( +)-Lactate in Blood by Use of Lactate Dehydrogenase from Yeast,” Clinical Chemistry, vol. 22 (11), 1976, pp. 1802-1805.
ELCO Diagnostics Company, “Direct 30/30® Blood Glucose Sensor,” Markwell Medical Catalog, 1990, 1 page.
Edwards Lifesciences, “Accuracy for You and Your Patients,” Marketing materials, 2002, 4 pages.
El Degheidy M.M., et al., “Optimization of an Implantable Coated Wire Glucose Sensor,” Journal of Biomedical Engineering, vol. 8, Apr. 1986, pp. 121-129.
El-Khatib F.H., et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Dual Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine,” Journal of Diabetes Science and Technology, Diabetes Technology Society, vol. 1 (2), 2007, pp. 181-192.
El-Sa'ad L., et al., “Moisture Absorption by Epoxy Resins: The Reverse Thermal Effect,” Journal of Materials Science, vol. 25, 1990, pp. 3577-3582.
English D., et al., “Platelet-Released Phospholipids Link Haemostasis and Angiogenesis,” Cardiovascular Research, 2001, vol. 49, pp. 588-599.
Ernst H., et al., “Reliable Glucose Monitoring Through the Use of Microsystem Technology,” Analytical Bioanalytical Chemistry, vol. 373, 2002, pp. 758-761.
European Electronic File History for EP Application No. 10195447.7, filed Jul. 13, 2005—withdrawn, 200 pages.
European Electronic File History for EP Application No. 10195504.5, filed Jul. 13, 2005, 184 pages—withdrawn.
European Electronic File History for EP Application No. 11182615.2, filed Feb. 22, 2006, 344 pages.
European Electronic File History for EP Application No. 11182630.1, filed Sep. 23, 2011, 336 pages.
European Electronic File History for EP Application No. 14184330.0, filed Sep. 10, 2014, 377 pages.
European Electronic File History for EP Application No. 17198022.0, filed Oct. 24, 2017, 339 pages.
European Electronic File History for EP Patent Application No. 06773682.7 filed Jun. 20, 2006, 1697 pages.
European Electronic File History for EP Patent No. 1804650 (05771643.3) granted Mar. 14, 2012, 3733 pages.
European Electronic File History for EP Patent No. 1855588 (06748336.2), granted Nov. 21, 2007, 862 pages.
European Electronic File History for EP Patent No. 1986543 (06736006.5) granted Dec. 14, 2011, 1895 pages.
European Electronic File History for EP Patent No. 2322094 (10195496.4) granted Mar. 5, 2014, 1778 pages.
European Electronic File History for EP Patent No. 2327362 (10195517.7) granted Nov. 13, 2013, 423 pages.
European Electronic File History for EP Patent No. 2327984 (10195521.9) granted Feb. 25, 2015, 394 pages.
European Electronic File History for EP Patent No. 2329770 (10195509.4) granted Sep. 10, 2014, 1274 pages.
European Electronic File History for EP Patent No. 2332466 (10195483.2) granted Apr. 9, 2014, 484 pages.
European Electronic File History for EP Patent No. 2335582 (10195511.0) granted Sep. 10, 2014, 608 pages.
European Electronic File History for EP Patent No. 2335583 (10195520.1) granted Mar. 18, 2015, 677 pages.
European Electronic File History for EP Patent No. 2335584 (10195519.3) granted Jun. 17, 2015, 796 pages.
European Electronic File History for EP Patent No. 2335585 (10195508.6) granted Sep. 7, 2016, 722 pages.
European Electronic File History for EP Patent No. 2335586 (10195514.4) granted Feb. 19, 2014, 526 pages.
European Electronic File History for EP Patent No. 2335587 (10195518.5) granted Feb. 19, 2014, 5531 pages.
European Electronic File History for EP Patent No. 2407094 (11182622.8) granted Oct. 22, 2014, 2417 pages.
European Electronic File History for EP Patent No. 2499969 (12151826.0) granted Jun. 4, 2014, 814 pages.
European Electronic File History for EP Patent No. 2517623 (12151823.7) granted Mar. 2, 2016, 864 pages.
European Electronic File History for EP Patent No. 2532302 (12151819.5) granted Nov. 18, 2015, 845 pages.
European Electronic File History for EP Patent No. 2532305 (12171365.5) granted Aug. 13, 2014, 504 pages.
European Electronic File History for EP Patent No. 2561807 (12193934.2) granted Oct. 5, 2016, revoked Jan. 31, 2019, 2496 pages.
European Electronic File History for EP Patent No. 2596747 (13156245.6) granted Oct. 25, 2017, 1091 pages.
European Electronic File History for EP Publication No. 3001952 (15195173.8), published Apr. 16, 2016, 237 pages.
European Electronic File History for EP Publication No. 3111832 (16179208.0), published Jan. 4, 2017—pending, 191 pages.
European Search Report for Application No. 98908875.2 dated Apr. 29, 2004, 5 pages.
Extended European Search Report for Application No. 06718980.3 dated Mar. 9, 2010, 8 pages.
Extended European Search Report for Application No. 14184330.0 dated May 4, 2015, 11 pages.
Extended European Search Report for Application No. 19185160.9 dated Sep. 23, 2019, 8 pages.
Extended European Search Report for Application No. 20156336.8 dated Apr. 23, 2020, 7 pages.
Extended European Search Report for Application No. 20174073.5 dated Sep. 4, 2020, 8 pages.
Extended European Search Report for Application No. 20174075.0 dated Sep. 4, 2020, 8 pages.
Fabietti P.G., et al., “Clinical Validation of a New Control-Oriented Model of Insulin and Glucose Dynamics in Subjects with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 9 (4), 2007, pp. 327-338.
Fahy B.G., et al., “An Analysis: Hyperglycemic Intensive Care Patients Need Continuous Glucose Monitoring—Easier Said Than Done,” Journal of Diabetes Science and Technology, Diabetes Technology Society, vol. 2 (2), Mar. 2008, pp. 201-204.
Fare T.L., et al., “Functional Characterization of a Conducting Polymer-Based Immunoassay System,” Biosensors & Bioelectronics, vol. 13 (3-4), 1998, pp. 459-470.
Farlex, Inc, Definition of term “elastomeric”, Free Dictionary, Copyright 2008, retrieved from http://www.thefreedictionary.com/elastomeric, 3 pages.
Farlex, Inc., “Statistical Distribution—Definition of Statistical Distribution by The Free Dictionary—Thesaurus,” 2003-2016, 2 pages.
Feldman B., et al., “A Continuous Glucose Sensor Based on Wired EnzymeTM Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 5 (5), 2003, pp. 769-779.
File History of European Patent Application No. 19185160.9, filed on Mar. 10, 2006, 541 pages.
File History of U.S. Appl. No. 09/334,996, filed Jun. 17, 1999, 36 pages.
File History of U.S. Appl. No. 09/447,227, filed Nov. 22, 1999, 1184 pages.
File History of U.S. Appl. No. 09/489,588, filed Jan. 21, 2000, 412 pages.
File History of U.S. Appl. No. 09/636,369, filed Aug. 11, 2000, 91 pages.
File History of U.S. Appl. No. 09/916,711, filed Jul. 27, 2001, 400 pages.
File History of U.S. Appl. No. 09/916,858, filed Jul. 27, 2001, 243 pages.
File History of U.S. Appl. No. 10/153,356, filed May 22, 2002, 326 pages.
File History of U.S. Appl. No. 10/632,537, filed Aug. 1, 2003, 211 pages.
File History of U.S. Appl. No. 10/633,329, filed Aug. 1, 2003, 711 pages.
File History of U.S. Appl. No. 10/633,367, filed Aug. 1, 2003, 432 pages.
File History of U.S. Appl. No. 10/633,404, filed Aug. 1, 2003, 270 pages.
File History of U.S. Appl. No. 10/646,333, filed Aug. 22, 2003, 303 pages.
File History of U.S. Appl. No. 10/647,065, filed Aug. 22, 2003, 203 pages.
File History of U.S. Appl. No. 10/648,849, filed Aug. 22, 2003, 803 pages.
File History of U.S. Appl. No. 10/695,636, filed Oct. 28, 2003, 194 pages.
File History of U.S. Appl. No. 10/789,359, filed Feb. 26, 2004, 361 pages.
File History of U.S. Appl. No. 10/838,658, filed May 3, 2004, 748 pages.
File History of U.S. Appl. No. 10/838,909, filed May 3, 2004, 356 pages.
File History of U.S. Appl. No. 10/838,912, filed May 3, 2004, 1288 pages.
File History of U.S. Appl. No. 10/842,716, filed May 10, 2004, 670 pages.
File History of U.S. Appl. No. 10/846,150, filed May 14, 2004, 382 pages.
File History of U.S. Appl. No. 10/885,476, filed Jul. 6, 2004, 226 pages.
File History of U.S. Appl. No. 10/896,637, filed Jul. 21, 2004, 295 pages.
File History of U.S. Appl. No. 10/896,639, filed Jul. 21, 2004, 337 pages.
File History of U.S. Appl. No. 10/896,772, filed Jul. 21, 2004, 210 pages.
File History of U.S. Appl. No. 10/897,312, filed Jul. 21, 2004, 139 pages.
File History of U.S. Appl. No. 10/897,377, filed Jul. 21, 2004, 178 pages.
File History of U.S. Appl. No. 11/039,269, filed Jan. 19, 2005, 209 pages.
File History of U.S. Appl. No. 11/077,643, filed Mar. 10, 2005, 253 pages.
File History of U.S. Appl. No. 11/077,693 filed Mar. 10, 2005, 755 pages.
File History of U.S. Appl. No. 11/077,713, filed Mar. 10, 2005, 1025 pages.
File History of U.S. Appl. No. 11/077,714, filed Mar. 10, 2005, 320 pages.
File History of U.S. Appl. No. 11/077,715, filed Mar. 10, 2005, 717 pages.
File History of U.S. Appl. No. 11/077,739, filed Mar. 10, 2005, 778 pages.
File History of U.S. Appl. No. 11/077,740, filed Mar. 10, 2005, 921 pages.
File History of U.S. Appl. No. 11/077,763, filed Mar. 10, 2005, 515 pages.
File History of U.S. Appl. No. 11/077,765, filed Mar. 10, 2005, 932 pages.
File History of U.S. Appl. No. 11/077,883, filed Mar. 10, 2005, 1159 pages.
File History of U.S. Appl. No. 11/078,072, filed Mar. 10, 2005, 1334 pages.
File History of U.S. Appl. No. 11/078,230, filed Mar. 10, 2005, 535 pages.
File History of U.S. Appl. No. 11/078,232, filed Mar. 10, 2005, 256 pages.
File History of U.S. Appl. No. 11/157,365, filed Jun. 21, 2005, 977 pages.
File History of U.S. Appl. No. 11/157,746, filed Jun. 21, 2005, 603 pages.
File History of U.S. Appl. No. 11/158,227, filed Jun. 21, 2005, 474 pages.
File History of U.S. Appl. No. 11/201,445, filed Aug. 10, 2005, 120 pages.
File History of U.S. Appl. No. 11/280,102, filed Nov. 16, 2005, 109 pages.
File History of U.S. Appl. No. 11/280,672, filed Nov. 16, 2005, 572 pages.
File History of U.S. Appl. No. 11/333,837, filed Jan. 17, 2006, 672 pages.
File History of U.S. Appl. No. 11/334,107, filed Jan. 17, 2006, 191 pages.
File History of U.S. Appl. No. 11/334,876, filed Jan. 18, 2006, 751 pages.
File History of U.S. Appl. No. 11/335,879, filed Jan. 18, 2006, 499 pages.
File History of U.S. Appl. No. 11/360,250, filed Feb. 22, 2006, 950 pages.
File History of U.S. Appl. No. 11/360,252, filed Feb. 22, 2006, 594 pages.
File History of U.S. Appl. No. 11/360,262, filed Feb. 22, 2006, 766 pages.
File History of U.S. Appl. No. 11/360,299, filed Feb. 22, 2006, 676 pages.
File History of U.S. Appl. No. 11/360,819, filed Feb. 22, 2006, 778 pages.
File History of U.S. Appl. No. 11/373,628, filed Mar. 9, 2006, 532 pages.
File History of U.S. Appl. No. 11/411,656, filed Apr. 26, 2006, 285 pages.
File History of U.S. Appl. No. 11/415,593, filed May 2, 2006, 160 pages.
File History of U.S. Appl. No. 11/415,999, filed May 2, 2006, 154 pages.
File History of U.S. Appl. No. 11/416,375, filed May 2, 2006, 153 pages.
File History of U.S. Appl. No. 11/439,559, filed May 23, 2006, 155 pages.
File History of U.S. Appl. No. 11/439,630, filed May 23, 2006, 1237 pages.
File History of U.S. Appl. No. 11/439,800, filed May 23, 2006, 157 pages.
File History of U.S. Appl. No. 11/445,792, filed Jun. 1, 2006, 811 pages.
File History of U.S. Appl. No. 11/503,367, filed Aug. 10, 2006, 1169 pages.
File History of U.S. Appl. No. 11/618,706, filed Dec. 29, 2006, 288 pages.
File History of U.S. Appl. No. 11/681,145, filed Mar. 1, 2007, 684 pages.
File History of U.S. Appl. No. 11/690,752, filed Mar. 23, 2007, 528 pages.
File History of U.S. Appl. No. 11/695,607, filed Apr. 3, 2007, 615 pages.
File History of U.S. Appl. No. 11/734,178, filed Apr. 11, 2007, 512 pages.
File History of U.S. Appl. No. 11/734,184, filed Apr. 11, 2007, 531 pages.
File History of U.S. Appl. No. 11/734,203, filed Apr. 11, 2007, 606 pages.
File History of U.S. Appl. No. 11/742,546, filed Apr. 30, 2007, 348 pages.
File History of U.S. Appl. No. 11/766,747, filed Jun. 21, 2007, 789 pages.
File History of U.S. Appl. No. 11/797,520, filed May 3, 2007, 406 pages.
File History of U.S. Appl. No. 11/797,521, filed May 3, 2007, 374 pages.
File History of U.S. Appl. No. 11/842,139, filed Aug. 21, 2007, 274 pages.
File History of U.S. Appl. No. 11/842,142, filed Aug. 21, 2007, 163 pages.
File History of U.S. Appl. No. 11/842,143, filed Aug. 21, 2007, 235 pages.
File History of U.S. Appl. No. 11/842,146, filed Aug. 21, 2007, 252 pages.
File History of U.S. Appl. No. 11/842,148, filed Aug. 21, 2007, 166 pages.
File History of U.S. Appl. No. 11/842,149, filed Aug. 21, 2007, 256 pages.
File History of U.S. Appl. No. 11/842,151, filed Aug. 21, 2007, 252 pages.
File History of U.S. Appl. No. 11/842,154, filed Aug. 21, 2007, 199 pages.
File History of U.S. Appl. No. 11/842,157, filed Aug. 21, 2007, 167 pages.
File History of U.S. Appl. No. 11/925,603, filed Oct. 26, 2007, 453 pages.
File History of U.S. Appl. No. 11/928,968, filed Oct. 30, 2007, 741 pages.
File History of U.S. Appl. No. 12/101,790, filed Apr. 11, 2008, 431 pages.
File History of U.S. Appl. No. 12/101,806, filed Apr. 11, 2008, 611 pages.
File History of U.S. Appl. No. 12/101,810, filed Apr. 11, 2008, 569 pages.
File History of U.S. Appl. No. 12/137,396, filed Jun. 11, 2008, 278 pages.
File History of U.S. Appl. No. 12/175,391, filed Jul. 17, 2008, 564 pages.
File History of U.S. Appl. No. 12/245,618, filed Oct. 3, 2008, 214 pages.
File History of U.S. Appl. No. 12/250,918, filed Oct. 14, 2008, 333 pages.
File History of U.S. Appl. No. 12/273,359, filed Nov. 18, 2008, 312 pages.
File History of U.S. Appl. No. 12/329,496, filed Dec. 5, 2008, 438 pages.
File History of U.S. Appl. No. 12/353,870, filed Jan. 14, 2009, 425 pages.
File History of U.S. Appl. No. 12/359,207, filed Jan. 23, 2009, 456 pages.
File History of U.S. Appl. No. 12/364,786, filed Feb. 3, 2009, 1230 pages.
File History of U.S. Appl. No. 12/391,148, filed Feb. 23, 2009, 484 pages.
File History of U.S. Appl. No. 12/393,887, filed Feb. 26, 2009, 502 pages.
File History of U.S. Appl. No. 12/405,883, filed Mar. 17, 2009, 215 pages.
File History of U.S. Appl. No. 12/437,436, filed May 7, 2009, 524 pages.
File History of U.S. Appl. No. 12/537,245, filed Aug. 6, 2009, 107 pages.
File History of U.S. Appl. No. 12/610,866, filed Nov. 2, 2009, 682 pages.
File History of U.S. Appl. No. 12/683,724, filed Jan. 7, 2010, 497 pages.
File History of U.S. Appl. No. 12/683,755, filed Jan. 7, 2010, 694 pages.
File History of U.S. Appl. No. 12/728,032, filed Mar. 19, 2010, 819 pages.
File History of U.S. Appl. No. 12/728,060, filed Mar. 19, 2010, 323 pages.
File History of U.S. Appl. No. 12/728,061, filed Mar. 19, 2010, 437 pages.
File History of U.S. Appl. No. 12/728,082, filed Mar. 19, 2010, 802 pages.
File History of U.S. Appl. No. 12/729,035, filed Mar. 22, 2010, 466 pages.
File History of U.S. Appl. No. 12/729,048, filed Mar. 22, 2010, 488 pages.
File History of U.S. Appl. No. 12/729,058, filed Mar. 22, 2010, 502 pages.
File History of U.S. Appl. No. 12/730,072, filed Mar. 23, 2010, 278 pages.
File History of U.S. Appl. No. 12/748,154, filed Mar. 26, 2010, 419 pages.
File History of U.S. Appl. No. 12/749,139, filed Mar. 29, 2010, 489 pages.
File History of U.S. Appl. No. 12/749,981, filed Mar. 30, 2010, 662 pages.
File History of U.S. Appl. No. 12/775,315, filed May 6, 2010, 447 pages.
File History of U.S. Appl. No. 12/780,606, filed May 14, 2010, 372 pages.
File History of U.S. Appl. No. 12/780,723, filed May 14, 2010, 519 pages.
File History of U.S. Appl. No. 12/780,725, filed May 14, 2010, 415 pages.
File History of U.S. Appl. No. 12/780,739, filed May 14, 2010, 346 pages.
File History of U.S. Appl. No. 12/780,759, filed May 14, 2010, 348 pages.
File History of U.S. Appl. No. 12/853,235, filed Aug. 9, 2010, 374 pages.
File History of U.S. Appl. No. 13/077,884, filed Mar. 31, 2011, 635 pages.
File History of U.S. Appl. No. 13/086,160, filed Apr. 13, 2011, 967 pages.
File History of U.S. Appl. No. 13/116,871, filed May 26, 2011, 475 pages.
File History of U.S. Appl. No. 13/157,031, filed Jun. 9, 2011, 514 pages.
File History of U.S. Appl. No. 13/172,640, filed Jun. 29, 2011, 436 pages.
File History of U.S. Appl. No. 13/361,820, filed Jan. 30, 2012, 383 pages.
File History of U.S. Appl. No. 13/415,721, filed Mar. 8, 2012, 473 pages.
File History of U.S. Appl. No. 13/547,952, filed Jul. 12, 2012, 539 pages.
File History of U.S. Appl. No. 13/548,627, filed Jul. 13, 2012, 361 pages.
File History of U.S. Appl. No. 13/549,313, filed Jul. 13, 2012, 354 pages.
File History of U.S. Appl. No. 13/607,162, filed Sep. 7, 2012, 420 pages.
File History of U.S. Appl. No. 13/620,574, filed Sep. 14, 2012, 318 pages.
File History of U.S. Appl. No. 13/893,237, filed May 13, 2013, 569 pages.
File History of U.S. Appl. No. 13/903,609, filed May 28, 2013, 401 pages.
File History of U.S. Appl. No. 13/909,962, filed Jun. 4, 2013, 723 pages.
File History of U.S. Appl. No. 13/938,103, filed Jul. 9, 2013, 393 pages.
File History of U.S. Appl. No. 14/144,523, filed Dec. 30, 2013, 405 pages.
File History of U.S. Appl. No. 14/163,346, filed Jan. 24, 2014, 583 pages.
File History of U.S. Appl. No. 14/283,153, filed May 20, 2014, 568 pages.
File History of U.S. Appl. No. 14/293,298, filed Jun. 2, 2014, 565 pages.
File History of U.S. Appl. No. 14/296,735, filed Jun. 5, 2014, 637 pages.
File History of U.S. Appl. No. 14/552,398, filed Nov. 24, 2014, 422 pages.
File History of U.S. Appl. No. 14/590,483, filed Jan. 6, 2015, 556 pages.
File History of U.S. Appl. No. 14/743,777, filed Jun. 18, 2015, 392 pages.
File History of U.S. Appl. No. 14/860,602, filed Sep. 21, 2015, 429 pages.
File History of U.S. Appl. No. 14/923,350, filed Oct. 26, 2015, 476 pages.
File History of U.S. Appl. No. 14/924,030, filed Oct. 27, 2015, 403 pages.
File History of U.S. Appl. No. 15/065,623, filed Mar. 9, 2016, 401 pages.
File History of U.S. Appl. No. 15/201,313, filed Jul. 1, 2016, 800 pages.
File History of U.S. Appl. No. 15/470,766, filed Mar. 27, 2017, 336 pages.
File History of U.S. Appl. No. 15/686,650, filed Aug. 25, 2017, 296 pages.
File History of U.S. Appl. No. 15/719,298, filed Sep. 28, 2017, 258 pages.
File History of U.S. Appl. No. 15/787,595, filed Oct. 18, 2017, 230 pages.
File History of U.S. Appl. No. 15/797,986, filed Oct. 30, 2017, 342 pages.
File History of U.S. Appl. No. 15/798,097, filed Oct. 30, 2017, 323 pages.
File History of U.S. Appl. No. 15/877,311, filed Jan. 22, 2018, 208 pages.
File History of U.S. Appl. No. 15/891,201, filed Feb. 7, 2018, 364 pages.
File History of U.S. Appl. No. 15/967,338, filed Apr. 30, 2018, 191 pages.
File History of U.S. Appl. No. 16/017,668, filed Jun. 25, 2018, 308 pages.
File History of U.S. Appl. No. 16/133,469, filed Sep. 17, 2018, 178 pages.
File History of U.S. Appl. No. 16/137,411, filed Sep. 20, 2018, 174 pages.
File History of U.S. Appl. No. 16/179,662, filed Nov. 2, 2018, 272 pages.
File History of U.S. Appl. No. 16/181,678, filed Nov. 6, 2018,155 pages.
File History of U.S. Appl. No. 60/362,899, filed Mar. 8, 2002, 67 pages.
File History of U.S. Appl. No. 60/527,892, filed Dec. 8, 2003, 25 pages.
File History of U.S. Appl. No. 60/528,382, filed Dec. 9, 2003, 182 pages.
File History of U.S. Appl. No. 60/587,787, filed Jul. 13, 2004, 70 pages.
File History of U.S. Appl. No. 60/587,800, filed Jul. 13, 2004, 29 pages.
File History of U.S. Appl. No. 60/614,683, filed Sep. 30, 2004, 465 pages.
File History of U.S. Appl. No. 60/614,764, filed Sep. 30, 2004, 657 pages.
File History of U.S. Appl. No. 60/660,743, filed Mar. 10, 2005, 104 pages.
File History of U.S. Appl. No. 90/011,086, filed Jul. 8, 2010, 169 pages.
File History of U.S. Appl. No. 90/011,333, filed Nov. 15, 2010, 315 pages.
File History of U.S. Appl. No. 90/011,351, filed Nov. 22, 2010, 260 pages.
File History of U.S. Appl. No. 90/011,663, filed Apr. 29, 2011, 306 pages.
File History of U.S. Appl. No. 90/011,720, filed May 31, 2011, 361 pages.
File History of U.S. Appl. No. 90/011,887, filed Oct. 7, 2011, 769 pages.
File History of U.S. Appl. No. 90/012,558, filed Sep. 13, 2012, 294 pages.
File History of U.S. Appl. No. 95/001,038, filed Apr. 17, 2008, 1332 pages.
File History of U.S. Appl. No. 95/001,039, filed Apr. 17, 2008, 1409 pages.
File History of U.S. Appl. No. 95/002,333, filed Sep. 14, 2012, 556 pages.
Fischer U., et al., “Assessment of Subcutaneous Glucose Concentration: Validation of the Wick Technique as a Reference for Implanted Electrochemical Sensors in Normal and Diabetic Dogs,” Diabetologia, vol. 30, 1987, pp. 940-945.
Fischer U., et al., “Hypoglycaemia—Warning by Means of Subcutaneous Electrochemical Glucose Sensors: An Animal Study,” Horm. Metab. Res, vol. 27, 1995, p. 53. (Abstract Only).
Fischer U., et al., “Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors,” Biomed. Biochim. Acta, vol. 48 (11/12), 1989, pp. 965-971.
Freedman D., et al., “Statistics,” Second Edition, W.W. Norton & Company, New York & London, 1991, p. 74 (3 pages).
Freiberger P., “Video Game Takes on Diabetes Superhero ‘Captain Novolin’ Offers Treatment Tips,” Fourth Edition, Jun. 26, 1992, Business Section, 2 pages.
Frohnauer M.K., et al., “Graphical Human Insulin Time-Activity Profiles Using Standardized Definitions,” Diabetes Technology & Therapeutics, vol. 3 (3), 2001, pp. 419-429.
Frost M.C., et al., “Implantable Chemical Sensors for Real-Time Clinical Monitoring: Progress and Challenges,” Current Opinion in Chemical Biology, Analytical Techniques, vol. 6, 2002, pp. 633-641.
Gabby R.A., et al., “Optical Coherence Tomography-Based Continuous Noninvasive Glucose Monitoring in Patients with Diabetes,” Diabetes Technology & Therapeutics, vol. 10, Nov. 3, 2008, pp. 188-193.
Ganesan N., et al., “Gold Layer-Based Dual Crosslinking Procedure of Glucose Oxidase with Ferrocene Monocarboxylic Acid Provides a Stable Biosensor,” Analytical Biochemistry, Notes & Tips, vol. 343, 2005, pp. 188-191.
Ganesh A., et al., “Evaluation of the VIA® Blood Chemistry Monitor for Glucose in Healthy and Diabetic Volunteers,” Journal of Diabetes Science and Technology, vol. 2 (2), Mar. 2008, pp. 182-193.
Gao S., et al., “Determination of Interfacial Parameters of Cellulose Acetate Membrane Materials by HPLC,” Journal of Liquid Chromatography, 1989, vol. 12(11), pp. 2083-2092.
Garg S.K., et al., “Correlation of Fingerstick Blood Glucose Measurements With GlucoWatch Biographer Glucose Results in Young Subjects With Type 1 Diabetes,” Emerging Treatments and Technologies, Diabetes Care, vol. 22 (10), Oct. 1999, pp. 1708-1714.
Garg S.K., et al., “Improved Glucose Excursions Using an Implantable Real-Time Continuous Glucose Sensor in Adults With Type 1 Diabetes,” Emerging Treatments and Technologies, Diabetes Care, vol. 27 (3), 2004, pp. 734-738.
Geller R.I., et al., “Use of an Immunoisolation Device for Cell Transplantation and Tumor Immunotherapy,” Annals of the New York Academy of Science, 1997, vol. 831, pp. 438-451.
Gerritsen M., et al., “Influence of Inflammatory Cells and Serum on the Performance of Implantable Glucose Sensors,” Journal of Biomedical Material Research, 2001, vol. 54, pp. 69-75.
Gerritsen M., et al., “Performance of Subcutaneously Implanted Glucose Sensors for Continuous Monitoring,” The Netherlands Journal of Medicine, vol. 54, 1999, pp. 167-179.
Gerritsen M., et al., “Problems Associated with Subcutaneously Implanted Glucose Sensors,” Diabetes Care, vol. 23 (2), Feb. 2000, pp. 143-145.
Gilligan B.J., et al., “Evaluation of a Subcutaneous Glucose Sensor Out to 3 Months in a Dog Model” Diabetes Care, vol. 17 (8), Aug. 1994, pp. 882-887.
Gilligan B.J., et al., “Feasibility of Continuous Long-Term Glucose Monitoring from a Subcutaneous Glucose Sensor in Humans,” Diabetes Technology & Therapeutics, vol. 6 (3), 2004, pp. 378-386.
Godsland I.F., et al., “Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels,” The Biochemical Society and the Medical Research Society, Clinical Science, vol. 101, 2001, pp. 1-9.
Gore Preclude®, Pericardial Membrane Brochure, Jun. 2009. W.L. Gore & Associates Inc., Flagstaff, AZ 86004.
Gore Preclude®, Pericardial Membrane Brochure, Nov. 2001, W.L. Gore & Associates Inc., Flagstaff, AZ—86004, 4 pages.
Gouda M.D., et al., “Thermal Inactivation of Glucose Oxidase,” The Journal of Biological Chemistry, vol. 278 (27), Issue of Jul. 4, 2003, pp. 24324-24333.
Gough D.A., et al., “Frequency Characterization of Blood Glucose Dynamics,” Annals of Biomedical Engineering, vol. 31, 2003, pp. 91-97.
Gough D.A., et al., “Immobilized Glucose Oxidase in Implantable Glucose Sensor Technology,” Diabetes Technology & Therapeutics, vol. 2 (3), 2000, pp. 377-380.
Gough D.A., “The implantable Glucose Sensor: An Example of Bioengineering Design,” Introduction to Bioengineering, 2001, Chapter 3, pp. 57-66.
Gregg B A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Anal Chem, 1990, vol. 62, pp. 258-263.
Gross T.M., et al., “Efficacy and Reliability of the Continuous Glucose Monitoring System,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S19-S26.
Gross T.M., et al., “Performance Evaluation of the Minimed® Continuous Glucose Monitoring System During Patient Home Use,” Diabetes Technology & Therapeutics, vol. 2(1), 2000, pp. 49-56.
Gross, et al., “Diabetes Technology & Therapeutics,” Letters to the Editor, Diabetes Technology & Therapeutics, vol. 3 (1), 2001, pp. 129-131.
Guerci B., et al., “Clinical Performance of CGMS in Type 1 Diabetic Patients Treated by Continuous Subcutaneous Insulin Infusion Using Insulin Analogs,” Diabetes Care, vol. 26, 2003, pp. 582-589.
Guerra S., et al., “Enhancing the Accuracy of Subcutaneous Glucose Sensors: A Real-Time Deconvolution-Based Approach,” IEEE Transactions on Biomedical Engineering, vol. 59(6), Jun. 2012, pp. 1658-1669.
Guo M., et al., “Modification of Cellulose Acetate Ultrafiltration Membrane by Gamma Ray Radiation,” Shuichuli Jishi Bianji Weiyuanhui, 1998, vol. 23(6), pp. 315-318. (Abstract only).
Hall S.B., et al., “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part 1. An Adsorption-controlled Mechanism,” Electrochimica Acta, vol. 43, Nos. 5/6, 1998, pp. 579-588.
Hall S.B., et al., “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part II: Effect of potential,” Electrochimica Acta, vol. 43 (14-15), 1998, pp. 2015-2024.
Hall S.B., et al., “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part III: Effect of Temperature,” Electrochimica Acta, vol. 44, 1999, pp. 2455-2462.
Hall S.B., et al., “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part IV: Phosphate Buffer Dependence,” Electrochimica Acta, vol. 44, 1999, pp. 4573-4582.
Hall S.B., et al., “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part V: Inhibition by Chloride,” Electrochimica Acta, vol. 45, 2000, pp. 3573-3579.
Halvorsen C., et al., “Vasodilation of Rat Retinal Microvessels Induced by Monobutyrin,” Journal of Clinical Investigation, Dec. 1993, vol. 92, pp. 2872-2876.
Hamilton, “Complete Guide to Selecting the Right Hamilton GASTIGHT, MICROLITER, and Specialty Syringe for your Application,” Syringe Selection, http://www.hamiltoncompany.com 2006, 20 pages.
Harada, et al., “Long-Term Results of the Clinical Use of an Expanded Polytetrafluoroethylene Surgical Membrane as a Pericardial Substitute,” Journal of Thoracic and Cardiovascular Surgery, 1988, vol. 96(5), pp. 811-815.
Harrison, et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood,” Analytical Chemistry, 1988, vol. 60, pp. 2002-2007.
Hashiguchi Y., et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor with Microdialysis Sampling Method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-396.
Heise T., et al., “Hypoglycemia warning signal and glucose sensors: Requirements and concepts,” Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 563-571.
Heller A., “Electrical Connection of Enzyme Redox Centers to Electrodes,” J. Phys. Chem., vol. 96, 1992, pp. 3579-3587.
Heller A., “Electrical Wiring of Redox Enzymes,” Ace. Chem. Res., vol. 23, 1990, pp. 128-134.
Heller A., “Implanted Electrochemical Glucose Sensors for the Management of Diabetes,” Annu. Rev., Biomed Eng., vol. 1, 1999, pp. 153-175.
Heller A., “Plugging Metal Connectors into Enzymes,” Nature Biotechnology, vol. 21, No. 6, Jun. 2003, pp. 631-632.
Heller, et al., “In vivo Glucose Monitoring with Miniature “Wired” Glucose Oxidase Electrodes,” Analytical Sciences, 2001, vol. 17 Supplement, pp. i297-i300.
Heydron W H., et al., “A New Look at Pericardial Substitutes”, Journal of Thoracic and Cardiovascular Surgery, 1987, vol. 94(2), pp. 291-296.
Hicks J.M., “In Situ Monitoring,” Clinical Chemistry, vol. 31 (12), 1985, pp. 1931-1935.
Hitchman M.L., “Measurement of Dissolved Oxygen,” Edited by Elving P.J et al., Chemical Analysis, New York, John Wiley & Sons, vol. 49, Chapter 3, 1978, pp. 34-49 and 59-123.
Hoel P.G., “Elementary Statistics,” Fourth Edition, John Wiley & Sons, Inc., 1976, pp. 113-114.
Houghton Mifflin Company, “American Heritage Dictionary,” 4th Edition, 2000, pp. 82.
Houghton Mifflin Company, “Xenogenic, the American Heritage Stedman's Medical Dictionary,” 2002, Answers.Com, retrieved from http://www.answers.com/topic/xenogenic, on Nov. 7, 2006, 2 pages.
Hrapovic S., et al., “Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors Preparation and Characterization,” Anal. Chem, vol. 75, 2003, pp. 3308-3315.
Hu Y., et al., “A Needle-Type Enzyme-Based Lactate Sensor for in Vivo Monitoring,” Analytica Chimica Acta, vol. 281, 1993, pp. 503-511.
Huang C., et al., “Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Anodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode,” U.S. Department of Commence/NTIS, 1975, 126 pages.
Huang Q., et al., “A 0.5mW Passive Telemetry IC for Biomedical Applications,” Proceedings of the 23rd European Solid-State Circuits Conference (ESSCIRC '97), Southampton, UK, Sep. 16-18, 1997, pp. 172-175.
Hunter I., et al., “Minimally Invasive Glucose Sensor and Insulin Delivery System,” MIT Home Automation and Healthcare Consortium, Mar. 31, 2000, Progress Report No. 25, 17 pages.
International Preliminary Examination Report for Application No. PCT/US2002/023903 dated Apr. 20, 2005, 5 pages.
International Preliminary Report on Patentability for Application No. PCT/US2004/023455 dated Jan. 23, 2006, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US2004/040476 dated Dec. 8, 2006, 4 pages.
International Preliminary Report on Patentability for Application No. PCT/US2005/014696 dated Nov. 7, 2006, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2005/024993, dated Jan. 16, 2007, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US2005/024994 dated Jan. 16, 2007, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/US2006/006574 dated Aug. 26, 2008, 10 pages.
International Preliminary Report on Patentability for Application No. PCT/US2006/008616 dated Mar. 3, 2009, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/US2006/024132, dated Dec. 24, 2007, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2006/031496 dated Nov. 27, 2008, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/US2007/005422 dated Sep. 1, 2009, 5 pages.
International Preliminary Report on Patentability for Application No. PCT/US2008/058158, dated Sep. 29, 2009, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2003/15816 dated Sep. 22, 2003, 4 pages.
International Search Report and Written Opinion for Application No. PCT/US2004/023455 dated Dec. 23, 2004, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2004/040476 dated Nov. 16, 2006, 4 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/014696 dated Jun. 29, 2006, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/024993, dated Nov. 4, 2005, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/024994 dated Nov. 15, 2005, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/001998 dated Jul. 25, 2006, 5 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/006574 dated Aug. 4, 2006, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/008616 dated Mar. 13, 2008, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/019889 dated Feb. 20, 2007, 6 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/024132, dated Jul. 20, 2007, 6 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/031496 dated Sep. 20, 2007, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/038820 dated Jun. 20, 2007, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2007/005422 dated May 20, 2008, 5 pages.
International Search Report and Written Opinion for Application No. PCT/US2008/058158, dated Aug. 8, 2008, 10 pages.
International Search Report for Application No. PCT/US2001/023850 dated Jan. 16, 2002, 3 pages.
International Search Report for Application No. PCT/US2002/023903 dated Feb. 27, 2003, 4 pages.
Ishikawa M., et al., “Initial Evaluation of a 290-Mm Diameter Subcutaneous Glucose Sensor: Glucose Monitoring With a Biocompatible, Flexible-Wire, Enzyme-Based Amperometric Microsensor in Diabetic and Nondiabetic Humans,” Journal of Diabetes and Its Complications, vol. 12, 1998, pp. 295-301.
Jablecki M., et al., “Simulations of the Frequency Response of Implantable Glucose Sensors,” Analytical Chemistry, vol. 72, 2000, 1853-1859.
Jaffari S.A., et al., “Recent Advances in Amperometric Glucose Biosensors for In Vivo Monitoring,” Physiological Measurement, 1995, vol. 16, pp. 1-15.
Jaremko J., et al., “Advances Toward the Implantable Artificial Pancreas for Treatment of Diabetes,” Diabetes Care, vol. 21 (3), Mar. 1998, pp. 444-450.
Jensen M.B., et al., “Fast Wave Forms for Pulsed Electrochemical Detection of Glucose by Incorporation of Reductive Desorption of Oxidation Products,” Analytical Chemistry, vol. 69 (9), May 1997, pp. 1776-1781.
Jeong R.A., et al., “In Vivo Calibration of the Subcutaneous Amperometric Glucose Sensors Using a Non-Enzyme Electrode,” Biosensors and Bioelectronics, Elsevier, vol. 19, 2003, pp. 313-319.
Jeutter D.C., et al., “Design of a Radio-Linked Implantable Cochlear Prosthesis Using Surface Acoustic Wave Devices,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 40 (5), Sep. 1993, pp. 469-477.
Jeutter D.C., “A Transcutaneous Implanted Battery Recharging and Biotelemeter Power Switching System,” IEEE Transactions on Biomedical Engineering, vol. BME-29 (5), May 1982, pp. 314-321.
Jobst G., et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Anal Chem, Sep. 15, 1996, vol. 68(18), pp. 3173-3179.
Johnson K.W., et al., “In Vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue,” Biosensors and Bioelectronics, 1992, vol. 7, pp. 709-714.
Johnson K.W., “Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors,” Sensors and Actuators B, vol. 5, 1991, pp. 85-89.
Johnson R.C., et al., “Abstract: Neovascularization of Cell Transplantation Devices: Role of Membrane Architecture and Encapsulated Tissue,” Abstracts of Papers, American Chemical Society, Sep. (7-11), 1997, 214th ACS National Meeting, Part 2, 305-PMSE, 2 pages.
Joung G.B., et al., “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Transactions on Power Electronics, vol. 13 (6), Nov. 1998, pp. 1013-1022.
Jovanovic L.M.D., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus,” Diabetes Technology and Therapeutics, vol. 2 (1), 2000, pp. S67-S71.
Kacaniklic V., et al., “Amperometric Biosensors for Detection of L- and D-Amino Acids Based on Coimmoblized Peroxidase and L- and D-Amino Acid Oxidases in Carbon Paste Electrodes,” Electroanalysis, vol. 6, May-Jun. 1994, pp. 381-390.
Kamath A., et al., “Analysis of Time Lags and Other Sources of Error of the DexCom SEVEN Continuous Glucose Monitor,” Diabetics Technology and Therapeutic, Nov. 2009, vol. 11, No. 11, pp. 689-695.
Kamath A., et al., “Calibration of a Continuous Glucose Monitor: Effect of Glucose Rate of Change,” Eighth Annual Diabetes Technology Meeting, Nov. 13-15, 2008, pp. A88 (2 pages).
Kang S.K., et al., “In Vitro and Short-Term in Vivo Characteristics of a Kel-F Thin Film Modified Glucose Sensor,” Analytical Sciences, vol. 19, Nov. 2003, pp. 1481-1486.
Kaplan S.M., “Wiley Electrical and Electronics Engineering Dictionary,” IEEE Press, John Wiley & Sons, Inc., 2004, pp. 141, 142, 548 & 549.
Kargol M., et al., “Studies on the Structural Properties of Porous Membranes: Measurement of Linear Dimensions of Solutes,” Biophysical Chemistry, 2001, vol. 91, pp. 263-271.
Karube I., et al., “Microbiosensors for Acetylcholine and Glucose,” Biosensors & Bioelectronics, 1993, vol. 8, pp. 219-228.
Kaufman F.R., et al., “A Pilot Study of the Continuous Glucose Monitoring System,” Diabetes Care, vol. 24 (12), Dec. 2001, pp. 2030-2034.
Kaufman F.R., “Role of the Continuous Glucose Monitoring System in Pediatric Patients,” Diabetes Technology and Therapeutics, vol. 2 (1), 2000, S49-S52.
Kawagoe J.L., et al., “Enzyme-Modified Organic Conducting Salt Microelectrode,” Analytical Chemistry, vol. 63, 1991, pp. 2961-2965.
Keedy F.H., et al., “Determination of Urate in Undiluted Whole Blood by Enzyme Electrode,” Biosensors and Bioelectronics, vol. 6, 1991, pp. 491-499.
Kerner W., et al., “The Function of a Hydrogen Peroxide-Detecting Electroenzymatic Glucose Electrode is Markedly Impaired in Human Sub-Cutaneous Tissue and Plasma,” Biosensors and Bioelectronics, vol. 8, 1993, pp. 473-482.
Kerner W., “Implantable Glucose Sensors: Present Status and Future Developments,” Experimental and Clinical Endocrinol Diabetes, vol. 109 (2), 2001, pp. S341-S346.
Kerner, et al., “A Potentially Implantable Enzyme Electrode for Amperometric Measurement of Glucose,” Hormone and Metabolic Research Supplement, vol. 20, 1988, pp. 8-13.
Kidd K R., et al., “Angiogenesis and Neovascularization Associated with Extracellular Matrix Modified Porous Implants,” Journal of Biomedical Materials Research, 2001, vol. 59(2), pp. 366-377.
Kiechle F.L., “The Impact of Continuous Glucose Monitoring on Hospital Point-of-Care Testing Programs,” Diabetes Technology and Therapeutics, vol. 3 (4), 2001, pp. 647-649.
Klonoff D., et al., “Performance Metrics for Continuous Interstitial Glucose Monitoring; Approved Guideline,” Clinical and Laboratory Standards Institute, POCT05-A, vol. 28 (33), 2008, 72 pages.
Klueh U., et al., “Inflammation and Glucose Sensors: Use of Dexamethasone to Extend Glucose Sensor Function and Life Span in Vivo,” Journal of Diabetes Science and Technology, vol. 1 (4), Jul. 2007, pp. 496-504.
Klueh U., et al., “Use of Vascular Endothelial Cell Growth Factor Gene Transfer to Enhance Implantable Sensor Function in Vivo,” Biosensor Function and VEGF-Gene Transfer, vol. 67 (4), 2003, pp. 1072-1086.
Kondo T., et al., “A Miniature Glucose Sensor, Implantable in the Blood Stream,” Diabetes Care, vol. 5 (3), May-Jun. 1982, 218-221.
Koschinsky T., et al., “New Approach to Technical and Clinical Evaluation of Devices for Self-Monitoring of Blood Glucose,” Diabetes Care, vol. 11 (8), Sep. 1988, pp. 619-629.
Koschinsky T., et al., “Sensors for Glucose Monitoring: Technical and Clinical Aspects,” Diabetes Metabolism Research and Reviews, vol. 17, No. 2, Jan. 1, 2001, pp. 113-123.
Kost J., et al., “Glucose-Sensitive Membranes Containing Glucose Oxidase: Activity, Swelling, and Permeability Studies,” Journal of Biomedical Materials Research, vol. 19, 1985, pp. 1117-1133.
Koudelka M., et al., “In Vivo Response of Microfabricated Glucose Sensors to Glycemia Changes in Normal Rats,” Biomed. Biochim. Acta, vol. 48 (11/12), Nov.-Dec. 1989, pp. 953-956.
Koudelka M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors and Bioelectronics, vol. 6, 1991, pp. 31-36.
Kovatchev B.P., et al., “Evaluating the Accuracy of Continuous Glucose-Monitoring Sensors: Continuous Glucose-Error Grid Analysis Illustrated by TheraSense Freestyle Navigator Data,” Diabetes Care, vol. 27 (8), Aug. 2004, pp. 1922-1928.
Kraver., et al., “A Mixed-Signal Sensor Interface Microinstrument,” Sensors and Actuators A, Physical 2001, vol. 91, pp. 266-277.
Krouwer J.S., “Setting Performance Goals and Evaluating Total Analytical Error for Diagnostic Assays,” Clinical Chemistry, vol. 48 (6), 2002, pp. 919-927.
Kruger D., et al., “Psychological Motivation and Patient Education: A Role for Continuous Glucose Monitoring,” Diabetes Technology and Therapeutics, vol. 2 (1), 2000, pp. S93-S97.
Kugler J D., et al., “A New Steroid-Eluting Epicardial Lead: Experience with Atrial and Ventricular Implantation in the Immature Swine,” PACE, Aug. 1990, vol. 13, pp. 976-981.
Kulys J., et al., “Carbon-Paste Biosensors Array for Long-Term Glucose Measurement,” Biosensors & Bioelectronics, vol. 9, 1994, pp. 491-500.
Kunjan K., et al., “Automated Blood Sampling and Glucose Sensing in Critical Care Settings,” Journal of Diabetes Science and Technology, vol. 2 (2), Mar. 2008, pp. 194-200.
Kunzler J F., et al., “Contact Lens Materials,” Chemistry & Industry, Aug. 21, 1995, pp. 651-655.
Kunzler J., et al.,“Hydrogels based on Hydrophilic Side Chain Siloxanes,” Poly Mat Sci and Eng, 1993, vol. 69, pp. 226-227.
Kurnik R.T., et al., “Application of the Mixtures of Experts Algorithm for Signal Processing in a Noninvasive Glucose Monitoring System,” Sensors and Actuators B, vol. 60, 1999, pp. 19-26.
Kurtz T.W., et al., “Recommendations for Blood Pressure Measurement in Humans and Experimental Animals, Part 2: Blood Pressure Measurement in Experimental Animals: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,” Hypertension, Feb. 2005, vol. 45, pp. 299-310.
Kusano H., “Glucose Enzyme Electrode with Percutaneous Interface which Operates Independently of Dissolved Oxygen,” Clinical Physics and Physiological Measurement, 1989, vol. 10, No. 1, pp. 1-9.
Lacourse W.R., et al., “Optimization of Waveforms for Pulsed Amperometric Detection of Carbohydrates Based on Pulsed Voltammetry,” Analytical Chemistry, vol. 65, 1993, pp. 50-52.
Ladd M.F.C., et al., “Structure Determination by X-Ray Crystallography,” 3rd Edition, Plenum Press, 1994, Ch. 1, pp. xxi-xxiv and 1-58.
Lee E., et al., “Effects of Pore Size, Void Volume, and Pore Connectivity on Tissue Responses to Porous Silicone Implants,” Society for Biomaterials, 25th Annual Meeting, 1999, p. 171.
Lehmann E.D., et al., Retrospective Validation of a Physiological Model of Glucose-Insulin Interaction in Type 1 Diabetes Mellitus. Medical Engineering & Physics, vol. 16, May 1994, pp. 193-202.
Leprince P., et al., “Expanded Polytetrafluoroethylene Membranes to Wrap Surfaces of Circulatory Support Devices in Patients Undergoing Bridge to Heart Transplantation,” European Journal of Cardiothoracic Surgery, 2001, vol. 19, pp. 302-306.
Lerner., et al., “An Implantable Electrochemical Glucose Sensor,” Ann. N. Y. Acad. Sci., vol. 428, May 1984, pp. 263-278.
Lewandowski J.J., et al., “Evaluation of a Miniature Blood Glucose Sensor,” Transactions—American Society for Artificial Internal Organs, vol. 34, 1988, pp. 255-258.
Leypoldt J.K., et al., “Model of a Two-Substrate Enzyme Electrode for Glucose,” Analytical Chemistry, vol. 56, 1984, pp. 2896-2904.
Linke B., et al., “Amperometric Biosensor for In Vivo Glucose Sensing Based on Glucose Oxidase Immobilized in a Redox Hydrogel,” Biosensors and Bioelectronics, vol. 9, 1994, pp. 151-158.
Loebe M., et al., “Use of Polytetrafluoroethylene Surgical Membranes as a Pericardial Substitute,” PTFE Membrane in Correction of Congenital Heart Defects, Texas Heart Institute Journal, 1993, vol. 20, No. 3, pp. 213-217.
Loffler P., et al., “Separation and Determination of Traces of Ammonia in Air by Means of Chromatomembrane Cells,” Fresenius Journal of Analytical Chemistry, 1995, vol. 352, pp. 613-614.
Lohn A., et al., “A Knowledge-Based System for Real-Time Validation of Calibrations and Measurements,” Chemometrics and Intelligent Laboratory Systems, vol. 46, 1999, pp. 57-66.
Lowe C.R., “Biosensors,” Trends in Biotechnology, vol. 2 (3), 1984, pp. 59-65.
Luong J.H.T., et al., “Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer,” Electroanalysis, vol. 16 (1-2), 2004, pp. 132-139.
Lyandres O., et al. “Progress toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor,” Diabetes Technology and Therapeutics, vol. 10 (4), 2008, pp. 257-265.
Lyman D J., “Polyurethanes. I. The Solution Polymerization of Diisocyanates with Ethylene Glycol,” Journal of Polymer Science, 1960, vol. XLV, pp. 49-59.
Lynch S.M., et al., “Estimation-Based Model Predictive Control of Blood Glucose in Type I Diabetics: A Simulation Study,” Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference, 2001, pp. 79-80.
Lynn P.A., “Recursive Digital Filters for Biological Signals,” Med. & Biol. Engineering, vol. 9, 1971, pp. 37-43.
Madaras M B., et al., “Microfabricated Amperometric Creatine and Creatinine Biosensors,” Analytica Chimica Acta, 1996, vol. 319, pp. 335-345.
Maidan R., et al., “Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors,” Analytical Chemistry, vol. 64, 1992, pp. 2889-2896.
Makale M.T., et al., “Tissue Window Chamber System for Validation of Implanted Oxygen Sensors,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 284, Feb. 21, 2003, pp. 1-27.
Malin S.F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy,” Clinical Chemistry, vol. 45 (9), 1999, pp. 1651-1658.
Mancy K.H., et al., “A Galvanic Cell Oxygen Analyzer,” Journal of Electroanalytical Chemistry, vol. 4, 1962, pp. 65-92.
Maran A., et al., “Continuous Subcutaneous Glucose Monitoring in Diabetic Patients,” A Multicenter Analysis, Diabetes Care, vol. 25 (2), Feb. 2002, pp. 347-352.
March W.F., “Dealing with the Delay,” Diabetes Technology & Therapeutics, vol. 4 (1), 2002, pp. 49-50.
Marena S., et al., “The Artificial Endocrine Pancreas in Clinical Practice and Research,” Panminerva Medica, vol. 35 (2), 1993, pp. 67-74.
Martin R.F., “General Deming Regression for Estimating Systematic Bias and its Confidence Interval in Method-Comparison Studies,” Clinical Chemistry, vol. 46 (1), 2000, pp. 100-104.
Mascini M., et al., “Glucose Electrochemical Probe with Extended Linearity for Whole Blood,” Journal Pharmaceutical and Biomedical Analysis, vol. 7 (12), 1989, pp. 1507-1512.
Mastrototaro J.J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate,” Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
Mastrototaro J.J., et al., “Reproducibility of the Continuous Glucose Monitoring System Matches Previous Reports and the Intended Use of the Product,” Diabetes Care, vol. 26 (1), Jan. 2003, pp. 256-257.
Mastrototaro J.J., “The MiniMed Continuous Glucose Monitoring System,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S13-S18.
Mathivanar R., et al., “In Vivo Elution Rate of Drug Eluting Ceramic Leads with a Reduced Dose of Dexamethasone Sodium Phosphate,” PACE, vol. 13, Part II, Dec. 1990, pp. 1883-1886.
Matsuki H., “Energy Transfer System Utilizing Amorphous Wires for Implantable Medical Devices,” IEEE Transactions on Magnetics, vol. 31 (2), 1994, pp. 1276-1282.
Matsumoto T., et al., “A Micro-Planar Amperometric Glucose Sensor Unsusceptible to Interference Species,” Sensors and Actuators B, 49, 1998, pp. 68-72.
Matthews D.R., et al., “An Amperometric Needle-Type Glucose Sensor Testing in Rats and Man,” Diabetic Medicine, vol. 5, 1988, pp. 248-252.
Mazze R.S., et al., “Characterizing Glucose Exposure for Individuals with Normal Glucose Tolerance Using Continuous Glucose Monitoring and Ambulatory Glucose Profile Analysis,” Diabetes Technology & Therapeutics, vol. 10 (3), 2008, pp. 149-159.
Mazzola F., et al., “Video Diabetes: A Teaching Tool for Children with Insulin-Dependent Diabetes,” IEEE, Proceedings 7th Annual Symposium on Computer Applications in Medical Care, Oct. 1983, 1 page Abstract.
McCartney L.J., et al., “Near-Infrared Fluorescence Lifetime Assay for Serum Glucose Based on Allophycocyanin-Labeled Concanavalin A,” Analytical Biochemistry, vol. 292, 2001, pp. 216-221.
McGrath M.J., et al., “The Use of Differential Measurements with a Glucose Biosensor for Interference Compensation During Glucose Determinations by Flow Injection Analysis,” Biosens Bioelectron, vol. 10, 1995, pp. 937-943.
McKean B.D., et al., “A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, vol. 35 (7), Jul. 1988, pp. 526-532.
Memoli A., et al., “A Comparison between Different Immobilised Glucoseoxidase-Based Electrodes,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, 2002, pp. 1045-1052.
Merriam Webster Online Dictionary, Definition for “Aberrant,” retrieved from https://www.merriam-webster.com/dictionary/aberrant Aug. 19, 2008, 1 page.
Merriam-Webster Online Dictionary, Definition of “Acceleration” retrieved from http://www.merriam-webster.com/dictionary/Acceleration Jan. 11, 2010, 1 page.
Merriam-Webster Online Dictionary, Definition of “Nominal” retrieved from http://www.merriam-webster.com/dictionary/nominal Apr. 23, 2007, 1 page.
Merriam-Webster Online Dictionary, Definition of “System”. http://www.merriamwebster.com/dictionary/System Jan. 11, 2010, 2 pages.
Metzger M., et al., “Reproducibility of Glucose Measurements using the Glucose Sensor,” Diabetes Care, vol. 25 (6), Jul. 2002, pp. 1185-1191.
Meyerhoff C., et al., “On Line Continuous Monitoring of Subcutaneous Tissue Glucose in Men by Combining Portable Glucosensor With Microdialysis,” Diabetologia, vol. 35 (11), 1992, pp. 1087-1092.
Mid-West Innovators, Inc., “Durometer Product Description,” 2014, 1 page.
Miller J.A., et al., “Development of an Autotuned Transcutaneous Energy Transfer System,” ASAIO Journal, vol. 39, 1993, pp. M706-M710.
Miller K.M., et al., “Generation of IL-1 like Activity in Response to Biomedical Polymer Implants: a Comparison of in Vitro and in Vivo Models,” Journal of Biomedical Materials Research, vol. 23(9), 1989, pp. 1007-1026.
Miller K.M., et al., “Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers,” Journal of Biomedical Materials Research, vol. 22 (8), 1988, pp. 713-731.
Miller K.M., et al., “In Vitro Stimulation of Fibroblast Activity by Factors Generated from Human Monocytes Activated by Biomedical Polymers,” Journal of Biomedical Materials Research, vol. 23(8), 1989, pp. 911-930.
Minale C., et al., “Clinical Experience with Expanded Polytetrafluoroethylene Gore-Tex Surgical Membrane for Pericardial Closer: A Study of 110 Cases,” Journal of Cardiac Surgery, vol. 3, Sep. 1988, pp. 193-201.
Moatti-Sirat D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor,” Biosensors and Bioelectronics, vol. 7, 1992, pp. 345-352.
Moatti-Sirat D., et al., “Reduction of Acetaminophen Interference in Glucose Sensors by a Composite Nafion Membrane: Demonstration in Rats and Man,” Diabetologia, vol. 37 (6), Jun. 1994, pp. 610-616.
Moatti-Sirat., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue,” Diabetologia, vol. 35, 1992, pp. 224-230.
Mond H.G., et al., “The Electrode-Tissue Interface: The Revolutionary Role of Steroid Elution,” PACE, vol. 15, Jan. 1992, pp. 95-107.
Monsod T.P., et al., “Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia?,” Diabetes Care, vol. 25 (5), 2002, pp. 889-893.
Morff R.J., et al., “Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12 (2), 1990, pp. 0483-0484.
Mosbach K., et al., “Determination of Heat Changes in the Proximity of Immobilized Enzymes with an Enzyme Thermistor and its Use for the Assay of Metabolites,” Biochimica Biophysica Acta, vol. 403, 1975, pp. 256-265.
Motonaka J., et al., “Determination of Cholesterol and Cholesterol Ester with Novel enzyme Microsensors,” Anal. Chem., vol. 65, 1993, pp. 3258-3261.
Moussy F., et al., “A Miniaturized Nafion-Based Glucose Sensor: in Vitro and In Vivo Evaluation in Dogs,” International Journals of Artificial Organs, vol. 17 (2), 1994, pp. 88-94.
Moussy F., et al., “Biomaterials community examines biosensor biocompatibility,” Diabetes Technology & Therapeutics, vol. 2(3), 2000, pp. 473-477.
Moussy F., et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, Aug. 1, 1993, pp. 2072-2077.
Moussy F., “Implantable Glucose Sensor: Progress and Problems,” IEEE, Nov. 2002, pp. 270-273.
Mowery K.A., et al., “Preparation and Characterization by Hydrophobic Polymeric Films that are Thromboresistant via Nitric Oxide Release,” Biomaterials, vol. 21, 2000, pp. 9-21.
Murphy S.M., et al., “Polymer Membranes in Clinical Sensor Applications, II. The Design and Fabrication of Permselective Hydrogels for Electrochemical Devices,” Biomaterials, 1992, vol. 13 (14), pp. 979-990.
Muslu, “Trickling Filter Performance,” Applied Biochemistry and Biotechnology, vol. 37, 1992, pp. 211-224.
Myler S., et al., “Ultra-Thin-Polysiloxane-Film-Composite Membranes for the Optimisation of Amperometric Oxidase Enzyme Electrodes,” Biosensors & Bioelectronics, vol. 17, 2002, pp. 35-43.
Nakayama Y., et al., “Surface Fixation of Hydrogels: Heparin and Glucose Oxidase Hydrogelated Surfaces” ASAIO Journal, 1992, pp. M421-M424.
Nam Y.S., et al., “A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive,” J Biomed Mater Res, 2000, vol. 53, pp. 1-7.
Neuburger G.G., et al., “Pulsed Amperometric Detection of Carbohydrates at Gold Electrodes with a Two-Step Potential Waveform,” Anal. Chem., vol. 59, 1987, pp. 150-154.
Nintendo Healthcare, Wired, Dec. 1993, 1 page.
Novo Nordisk Pharmaceuticals Inc., “Diabetes Educational Video Game Recognized by Software Publishers Association,” Press Release, Mar. 14, 1994, 4 pages.
Office Action for European Application No. 10193214.3, dated May 2, 2013, and Applicant Response filed Aug. 28, 2013, 12 pages.
Office Action for Japanese Application No. 10-538680, dated Nov. 20, 2007, 6 pages.
Office Action for U.S Appl. No. 08/811,473, dated Dec. 7, 1998, 5 pages.
Office Action for U.S Appl. No. 09/916,386, dated Apr. 9, 2003, 8 pages.
Office Action for U.S Appl. No. 10/657,843, dated Sep. 21, 2004, 8 pages.
Office Action for U.S Appl. No. 10/768,889, dated Feb. 4, 2009, 9 pages.
Office Action for U.S Appl. No. 10/991,966, dated Jul. 22, 2008, 12 pages.
Office Action for U.S Appl. No. 10/991,966, dated Nov. 28, 2007, 13 pages.
Office Action for U.S Appl. No. 11/007,635, dated Jan. 27, 2006, 9 pages.
Office Action for U.S Appl. No. 11/007,920, dated Jun. 24, 2008, 10 pages.
Office Action for U.S Appl. No. 11/021,046, dated Aug. 19, 2009, 6 pages.
Office Action for U.S Appl. No. 11/021,046, dated Dec. 26, 2007, 6 pages.
Office Action for U.S Appl. No. 11/021,046, dated Feb. 4, 2009, 7 pages.
Office Action for U.S Appl. No. 11/021,046, dated Jun. 23, 2008, 6 pages.
Office Action for U.S Appl. No. 11/021,162, dated Jun. 19, 2008, 8 pages.
Office Action for U.S Appl. No. 11/034,343, dated Dec. 30, 2008, 4 pages.
Office Action for U.S Appl. No. 11/034,343, dated Jul. 10, 2008, 6 pages.
Office Action for U.S Appl. No. 11/034,343, dated Nov. 1, 2007, 5 pages.
Office Action for U.S Appl. No. 11/034,344, dated Jan. 15, 2008, 5 pages.
Office Action for U.S Appl. No. 11/038,340, dated Feb. 2, 2010, 18 pages.
Office Action for U.S Appl. No. 11/038,340, dated Jan. 5, 2009, 13 pages.
Office Action for U.S Appl. No. 11/038,340, dated Jun. 17, 2008, 11 pages.
Office Action for U.S Appl. No. 11/038,340, dated Jun. 7, 2010, 18 pages.
Office Action for U.S Appl. No. 11/038,340, dated May 19, 2009, 14 pages.
Office Action for U.S Appl. No. 11/038,340, dated Nov. 9, 2009, 16 pages.
Office Action for U.S Appl. No. 11/055,779, dated May 23, 2007, 13 pages.
Office Action for U.S Appl. No. 11/055,779, dated Oct. 24, 2007, 15 pages.
Office Action for U.S Appl. No. 11/077,759, dated Jul. 10, 2008, 10 pages.
Office Action for U.S Appl. No. 11/077,759, dated Mar. 31, 2008, 16 pages.
Office Action for U.S Appl. No. 11/077,759, dated May 17, 2007, 13 pages.
Office Action for U.S Appl. No. 11/077,759, dated May 26, 2009, 8 pages.
Office Action for U.S Appl. No. 11/415,631, dated Mar. 4, 2010, 6 pages.
Office Action for U.S Appl. No. 11/416,058, dated Mar. 5, 2010, 6 pages.
Office Action for U.S Appl. No. 11/416,346, dated Mar. 4, 2010, 7 pages.
Office Action for U.S Appl. No. 11/416,734, dated May 17, 2010, 10 pages.
Office Action for U.S Appl. No. 11/416,734, dated Oct. 14, 2009, 11 pages.
Office Action for U.S Appl. No. 11/416,825, dated Oct. 22, 2009, 11 pages.
Office Action for U.S Appl. No. 11/543,539, dated Dec. 12, 2007, 8 pages.
Office Action for U.S Appl. No. 11/543,539, dated May 23, 2007, 6 pages.
Office Action for U.S Appl. No. 11/543,683, dated Dec. 12, 2007, 8 pages.
Office Action for U.S Appl. No. 11/543,683, dated May 18, 2007, 7 pages.
Office Action for U.S Appl. No. 11/543,707, dated Dec. 12, 2007, 8 pages.
Office Action for U.S Appl. No. 11/543,707, dated May 18, 2007, 6 pages.
Office Action for U.S Appl. No. 11/543,734, dated Dec. 17, 2007, 11 pages.
Office Action for U.S Appl. No. 11/543,734, dated Jun. 5, 2007, 7 pages.
Office Action for U.S Appl. No. 11/546,157, dated Feb. 26, 2010, 6 pages.
Office Action for U.S Appl. No. 11/691,424, dated Dec. 8, 2009, 10 pages.
Office Action for U.S Appl. No. 11/691,424, dated Jun. 11, 2009, 21 pages.
Office Action for U.S Appl. No. 11/691,424, dated Nov. 12, 2009, 18 pages.
Office Action for U.S Appl. No. 11/691,424, dated Sep. 25, 2008, 15 pages.
Office Action for U.S Appl. No. 11/691,432, dated Feb. 18, 2010, 11 pages.
Office Action for U.S Appl. No. 11/691,432, dated Jun. 10, 2009, 17 pages.
Office Action for U.S Appl. No. 11/691,432, dated Nov. 30, 2009, 15 pages.
Office Action for U.S Appl. No. 11/691,432, dated Sep. 19, 2008, 11 pages.
Office Action for U.S Appl. No. 11/691,466, dated Oct. 3, 2008, 15 pages.
Office Action for U.S Appl. No. 11/692,154, dated Jan. 22, 2009, 9 pages.
Office Action for U.S Appl. No. 11/692,154, dated Jul. 8, 2009, 6 pages.
Office Action for U.S Appl. No. 12/037,812, dated Apr. 1, 2009, 5 pages.
Office Action for U.S Appl. No. 12/037,812, dated Jul. 24, 2009, 6 pages.
Office Action for U.S Appl. No. 12/037,812, dated Sep. 29, 2008, 7 pages.
Office Action for U.S Appl. No. 12/037,830, dated Aug. 7, 2009, 7 pages.
Office Action for U.S Appl. No. 12/037,830, dated Feb. 23, 2010, 7 pages.
Office Action for U.S Appl. No. 12/037,830, dated Feb. 26, 2009, 7 pages.
Office Action for U.S Appl. No. 12/037,830, dated Sep. 29, 2008, 6 pages.
Office Action for U.S Appl. No. 12/052,489, dated Aug. 25, 2010, 12 pages.
Office Action for U.S Appl. No. 12/055,098, dated Oct. 5, 2010, 12 pages.
Office Action for U.S Appl. No. 12/098,359, dated Jul. 7, 2010, 18 pages.
Office Action for U.S Appl. No. 12/102,654, dated Jul. 30, 2009, 9 pages.
Office Action for U.S Appl. No. 12/102,654, dated Mar. 10, 2010, 6 pages.
Office Action for U.S Appl. No. 12/102,729, dated Jul. 7, 2009, 7 pages.
Office Action for U.S Appl. No. 12/102,745, dated Dec. 23, 2008, 4 pages.
Office Action for U.S Appl. No. 12/111,062, dated Mar. 3, 2010, 8 pages.
Office Action for U.S Appl. No. 12/113,508, dated Feb. 23, 2010, 9 pages.
Office Action for U.S Appl. No. 12/113,724, dated Jun. 24, 2010, 12 pages.
Office Action for U.S Appl. No. 12/133,738, dated Sep. 10, 2010, 11 pages.
Office Action for U.S Appl. No. 12/133,761, dated Sep. 7, 2010, 11 pages.
Office Action for U.S Appl. No. 12/139,305, dated Jan. 13, 2010, 12 pages.
Office Action for U.S Appl. No. 12/182,073, dated Jun. 28, 2010, 20 pages.
Office Action for U.S Appl. No. 12/182,083, dated Jun. 24, 2010, 8 pages.
Office Action for U.S Appl. No. 12/264,160, dated Jun. 3, 2010, 5 pages.
Office Action for U.S Appl. No. 12/536,852, dated Jun. 25, 2010, 8 pages.
Office Action for U.S Appl. No. 12/536,852, dated Oct. 18, 2010, 10 pages.
Office Action for U.S Appl. No. 12/619,502, dated Sep. 7, 2010, 6 pages.
Office Action for U.S Appl. No. 12/829,337, dated Oct. 5, 2012, 10 pages.
Office Action from European Patent Application No. 05771646.6, dated Aug. 16, 2011, 3 pages.
Office Action from European Patent Application No. 05771646.6, dated Aug. 19, 2009, 4 pages.
Office Action from European Patent Application No. 05771646.6, dated Jun. 2, 2010, 5 pages.
Office Action from European Patent Application No. 05856669.6, dated Aug. 4, 2011, 7 pages.
Office Action from European Patent Application No. 05856669.6, dated Jun. 7, 2010, 5 pages.
Office Action from European Patent Application No. 05856669.6, dated Nov. 8, 2010, 6 pages.
Office Action from European Patent Application No. 14184330.0, dated Dec. 14, 2020, 240 pages.
Office Action from Japanese Patent Application No. 2007-521636 dated Mar. 1, 2011, 4 pages.
Office Action from Japanese Patent Application No. 2011-121598 dated May 22, 2012, 5 pages.
Office Action from Japanese Patent Application No. 2011-121598 dated Oct. 18, 2011, 9 pages.
Office Action from Japanese Patent Application No. 2012-006893 dated May 22, 2012, 4 pages.
Office Action from Japanese Patent Application No. 2012-169323 dated Oct. 16, 2012, 4 pages.
Office Action from Japanese Patent Application No. 2013-000959 dated Jan. 31, 2014, 6 pages.
Ohara T.J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2Cl](+/2+) Complexed Poly(1-Vinylimidazole) Films,” Analytical Chemistry, vol. 65, Dec. 1993, pp. 3512-3517.
Ohara T.J., et al., ““Wired” Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances,” Anal Chem, vol. 66, 1994, pp. 2451-2457.
Okuda, et al., “Mutarotase Effect on Micro Determinations of D-Glucose and its Anomers with β D-Glucose Oxidase,” Anal Biochem, vol. 43 (1), 1971, pp. 312-315.
Oxford English Dictionary Online, Definition of “Impending,” http://www.askoxford.com/results?view=devdict&field-12668446_Impending&branch Jan. 11, 2010, 1 page.
Palmisano F., et al., “Simultaneous Monitoring of Glucose and Lactate by an Interference and Cross-Talk Free Dual Electrode Amperometric Biosensor Based on Electropolymerized Thin Films,” Biosensors & Bioelectronics, vol. 15, 2000, pp. 531-539.
Panetti T.S., “Differential Effects of Sphingosine 1-Phosphate and Lysophosphatidic Acid on Endothelial Cells,” Biochimica et Biophysica Acta, vol. 1582, 2002, pp. 190-196.
Panteleon A.E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration,” Diabetes Technology & Therapeutics, vol. 5 (3), 2003, pp. 401-410.
Paramount PDS., “Durometer Made Easy (R) / Durometer Hardness Scales—General Reference Guide,” Paramount Industries Inc., 2008, 1 page.
Park I.B., et al., “Gas Separation Properties of Polysiloxane/Polyether Mixed Soft Segment Urethane Urea Membranes,” Journal of Membrane science, vol. 204, 2002, pp. 257-269.
Parker R.S., et al., “A Model-Based Algorithm for Blood Glucose Control in Type I Diabetic Patients,” IEEE Trans Biomed Engg (BME), vol. 46(2), 1999, pp. 148-157.
Patel H., et al., “Amperometric Glucose Sensors Based on Ferrocene Containing Polymeric Electron Transfer Systems—A Preliminary Report,” Biosensors & Bioelectronics, vol. 18, 2003, pp. 1073-1076.
Peacock W.F., et al., “Cardiac Troponin and Outcome in Acute Heart Failure,” N. Engl. J. Med., vol. 358, 2008, pp. 2117-2126.
Pegoraro M., et al., “Gas Transport Properties of Siloxane Polyurethanes,” Journal of Applied Polymer Science, vol. 57, 1995, pp. 421-429.
Peguin S., et al., “Pyruvate Oxidase and Oxaloacetate Decarboxylase Enzyme Electrodes—Simultaneous Determination of Transaminases with a Two-electrode-based Analyzer,” Analytica Chimica Acta, vol. 222, 1989, pp. 83-93.
Pfeiffer E.F., et al., “On Line Continuous Monitoring of Subcutaneous Tissue Glucose is Feasible by Combining Portable Glucosensor with Microdialysis,” Horm. Metab. Res., vol. 25, 1993, pp. 121-124.
Pfeiffer E.F., “The Glucose Sensor: The Missing Link in Diabetes Therapy,” Horm Metab Res Suppl., vol. 24, 1990, pp. 154-164.
Phillips R.E., et al., “Biomedical Applications of Polyurethanes: Implications of Failure Mechanisms,” Journal of Biomedical application, vol. 3, Oct. 1988, pp. 206-227.
Phillips R.P., “A High Capacity Transcutaneous Energy Transmission System,” ASIAO Journal, vol. 41, 1995, pp. M259-M262.
Pichert J.W., et al., “Issues for the Coming Age of Continuous Glucose Monitoring,” Diabetes Educator, vol. 26 (6), Nov.-Dec. 2000, pp. 969-980.
Pickup J.C., et al., “Developing Glucose Sensors for In Vivo Use,” Elsevier Science Publishers Ltd (UK), TIBTECH, vol. 11, 1993, pp. 285-291.
Pickup J.C., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensor Strategy,” Biosensors, vol. 3, (1987/1988), pp. 335-346.
Pickup J.C., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer,” Diabetologia, vol. 32, 1989, pp. 213-217.
Pickup J.C., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability,” Biosensors, vol. 4, 1989, pp. 109-119.
Pickup J.C., et al., “Progress Towards in Vivo Glucose Sensing with a Ferrocene-Mediated Amperometric Enzyme Electrode,” Horm Metab Res Suppl, vol. 20, 1988, pp. 34-36.
Pickup J.C., et al., “Responses and Calibration of Amperometric Glucose Sensors Implanted in the Subcutaneous Tissue of Man,” ACTA Diabetol, vol. 30, 1993, pp. 143-148.
Pineda L.M., et al., “Bone Regeneration with Resorbable Polymeric Membranes. III. Effect of Poly(L-lactide) Membrane Pore Size on the Bone Healing Process in Large Defects,” Journal of Biomedical Materials Research, vol. 31, 1996, pp. 385-394.
Pinner S.H., et al., “Cross-Linking of Cellulose Acetate by Ionizing Radiation,” Nature, vol. 184, Oct. 24, 1959, pp. 1303-1304.
Pishko M.V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels,” Analytical Chemistry, vol. 63 (20), 1991, pp. 2268-2272.
Pitzer K.R., et al., “Detection of Hypoglycemia with the Glucowatch Biographer,” Diabetes Care, vol. 24 (5), 2001, pp. 881-885.
Poirier J.Y., et al., “Clinical and Statistical Evaluation of Self-Monitoring Blood Glucose Meters,” Diabetes Care, vol. 21 (11), Nov. 1998, pp. 1919-1924.
Poitout V., et al., “A Glucose Monitoring System for on Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit,” Diabetologia, vol. 36, 1993, pp. 658-663.
Poitout V., et al., “Development of a Glucose Sensor for Glucose Monitoring in Man: The Disposable Implant Concept,” Clinical Materials, vol. 15, 1994, pp. 241-246.
Poitout V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor,” ASAIO Transactions, vol. 37, 1991, pp. M298-M300.
Postlethwaite T.A., et al., “Interdigitated Array Electrode as an Alternative to the Rotated Ring-Disk Electrode for Determination of the Reaction Products of Dioxygen Reduction,” Analytical Chemistry, vol. 68 (17), Sep. 1996, pp. 2951-2958.
Prabhu V.G., et al., “Electrochemical Studies of Hydrogen Peroxide at a Platinum Disc Electrode,” Electrochimica Acta, vol. 26 (6), 1981, pp. 725-729.
Preliminary Amendment for U.S Appl. No. 12/052,489, filed Mar. 20, 2008, 8 pages.
Quinn C.A.P., et al., “Biocompatible, Glucose-Permeable Hydrogel for In situ Coating of Implantable Biosensors,” Biomaterials, vol. 18 (24), 1997, pp. 1665-1670.
Quinn C.P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors,” The American Physiological Society, vol. 269, 1995, pp. E155-E161.
Rabah M.A., et al., “Electrochemical Wear of Graphite Anodes During Electrolysis of Brine,” Carbon, vol. 29 (2), 1991, pp. 165-171.
Radovsky A.N., et al., “Effects of Dexamethasone Elution on Tissue Reaction Around Stimulating Electrodes of Endocardial Pacing Leads in Dogs,” American Heart Journal, vol. 117 (6), Jun. 1989, pp. 1288-1298.
Rafael E., “Cell Transplantation and Immunoisolation: Studies on a Macroencapsulation Device,” Departments of Transplantation Surgery and Pathology, Karolinska Institutet, Huddinge Hospital, Stockholm, Sweden, 1999, pp. 1-83.
Ratner B.D., “Reducing Capsular Thickness and Enhancing Angiogenesis around Implant Drug Release Systems,” Journal of Controlled Release, vol. 78, 2002, pp. 211-218.
Rawlings R.A., et al., “Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-Guide),” Diabetes Technology & Therapeutics, vol. 13 (12), 2011, pp. 1241-1248.
Raya Systems Pioneers, “Raya Systems Pioneers Healthy Video Games,” PlayRight, Nov. 1993, pp. 14-15.
Reach G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?,” Analytical Chemistry, vol. 64 (6), Mar. 15, 1992, pp. 381A-386A.
Reach G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors, vol. 2, 1986, pp. 211-220.
Reach G., “Which Threshold to Detect Hypoglycemia? Value of Receiver-Operator Curve Analysis to Find a Compromise Between Sensitivity and Specificity,” Diabetes Care, vol. 24 (5), May 2001, pp. 803-804.
Reach, et al., “Clinical Sensors for In Vivo Monitoring,” Advances in Biosensors, COMAC Biomedical Engineering Concerted Action on Chemical Sensors for In Vivo Monitoring, Supplement 1: Chapter 1, 1993, pp. 7-28.
Rebrin K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs,” Diabetologia, vol. 32, 1989, pp. 573-576.
Rebrin K., et al., “Subcutaneous Glucose Monitoring by Means of Electrochemical Sensors: Fiction or Reality?,” Journal of Biomedical Engineering, vol. 14, Jan. 1992, pp. 33-40.
Rebrin K., et al., “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” The American Physiological Society, vol. 277, 1999, pp. E561-E571.
Reush, “Organometallic Compounds,” Chemical Reactivity, Virtual Textbook of Organic Chemistry, Retrieved from http://www.cem.msu.edu/-reuschlVirtualText/orgmetal.htm 2004, pp. 1-16.
Revuelta J.M., et al., “Expanded Polytetrafluoroethylene Surgical Membrane for Pericardial Closure,” The Journal of Thoracic and cardiovascular Surgery, vol. 89 (3), Mar. 1985, pp. 451-455.
Rhodes R.K., et al., “Prediction of Pocket-Portable and Implantable Glucose Enzyme Electrode Performance from Combined Species Permeability and Digital Simulation Analysis,” Analytical Chemistry, vol. 66 (9), May 1, 1994, pp. 1520-1529.
Rigla M., et al., “Real-Time Continuous Glucose Monitoring Together with Telemedical Assistance Improves Glycemic Control and Glucose Stability in Pump-Treated Patients,” Diabetes Technology & Therapeutics, vol. 10 (3), 2008, pp. 194-199.
Rinken T., et al., “Calibration of Glucose Biosensors by Using Pre-Steady State Kinetic Data,” Biosensors & Bioelectronics, vol. 13, 1998, pp. 801-807.
Rivers E.P., et al., “Central Venous Oxygen Saturation Monitoring in the Critically Ill Patient,” Current Opinion in Critical Care, 2001, vol. 7, pp. 204-211.
Sachlos E., et al., “Making Tissue Engineering Scaffolds Work Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds,” European Cells and Materials, vol. 5, 2003, pp. 29-40.
Sakakida M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations,” Artif. Organs Today, vol. 2 (2), 1992, pp. 145-158.
Sakakida M., et al., “Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane,” Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salardi S., et al., “The Glucose Area Under the Profiles Obtained with Continuous Glucose Monitoring System Relationships with HbA1C in Pediatric Type 1 Diabetic Patients,” Diabetes Care, vol. 25 (10), Oct. 2002, pp. 1840-1844.
Samuels M.P., “The Effects of Flight and Altitude,” Arch Dis Child, vol. 89, 2004, pp. 448-455.
San Diego Plastics Inc, “Polyethylene,” Datasheet, Retrieved from http://www.sdplastics.com/polyeth.html on Aug. 19, 2009, 7 pages.
Sanders E., et al., “Fibrous Encapsulation of Single Polymer Microfibers Depends on their Vertical Dimension in Subcutaneous Tissue Polymer Microfibers,” Journal of Biomedical Material Research, vol. 67A, 2003, pp. 1181-1187.
Sansen W., et al., “A Smart Sensor for the Voltammetric Measurement of Oxygen or Glucose Concentrations,” Sensors and Actuators B1, 1990, pp. 298-302.
Sansen W., et al., “Glucose Sensor with Telemetry System,” In Implantable Sensors for Closed Loop Prosthetic Systems edited by Ko W.H, Chapter 12, 1985, pp. 167-175.
Schaffar B.P.H., “Thick Film Biosensors for Metabolites in Undiluted Whole Blood and Plasma Samples,” Analytical Bioanalytical Chemistry, Dec. 2001, vol. 372, pp. 254-260.
Schmidt F.J., et al., “Calibration of a Wearable Glucose Sensor,” The International Journal of Artificial Organs, Wichtig Publishing, IT, vol. 15 (1), Jan. 1, 1992, pp. 55-61.
Schmidt F.J., et al., “Glucose Concentration in Subcutaneous Extracellular Space,” Diabetes Care, vol. 16 (5), May 1993, pp. 695-700.
Schmidtke D.W., et al., “Accuracy of the One-Point in Vivo Calibration of “Wired” Glucose Oxidase Electrodes Implanted in Jugular Veins of Rats in Periods of Rapid Rise and Decline of the Glucose Concentration,” Analytical Chemistry, vol. 70 (10), May 15, 1998, pp. 2149-2155.
Schmidtke D.W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin,” Proceedings of the National Academy of Sciences, vol. 95, Jan. 1998, pp. 294-299.
Schoemaker M., et al., “The SCGMI System: Subcutaneous Continuous Glucose Monitoring Based on Microdialysis Technique,” Diabetes Technology & Therapeutics, vol. 5 (4), 2003, pp. 599-608.
Schoonen A.J.M., et al., “Development of a Potentially Wearable Glucose Sensor for Patients with Diabetes Mellitus: Design and In-vitro Evaluation,” Biosensors & Bioelectronics, vol. 5, 1990, pp. 37-46.
Schuler, et al., “Modified Gas-Permeable Silicone Rubber Membranes for Covalent Immobilisation of Enzymes and their Use in Biosensor Development,” Analyst, 1999, vol. 124, pp. 1181-1184.
Selam J.L., “Management of Diabetes with Glucose Sensors and Implantable Insulin Pumps,” From the Dream of the 60s to the Realities of the 90s, ASAIO Journal 1997, vol. 43, pp. 137-142.
Service F.J., et al., “Mean Amplitude of Glycemic Excursions, A Measure of Diabetic Instability,” Diabetes, vol. 19 (9), Sep. 1970, pp. 644-655.
Service F.J., et al., “Measurements of Glucose Control,” Diabetes Care, vol. 10 (2), Mar.-Apr. 1987, pp. 225-237.
Service R.F., “Can Sensors Make a Home in the Body?,” Science, Materials Science: Soft Surface, vol. 297, Aug. 9, 2002, pp. 962-963.
Sharkawy A.A., et al., “Engineering the Tissue Which Encapsulates Subcutaneous Implants. I. Diffusion Properties,” Journal of Biomedical Materials Research, vol. 37, 1996, pp. 401-412.
Shaw G.W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor,” Diabetes Nutrition & Metabolism, vol. 2 (4), 1989, pp. 309-313.
Shichiri M., et al., “Needle Type Glucose Sensor for Wearable Artificial Endocrine Pancreas,” In Implantable Sensors for Closed-Loop Prosthetic Systems edited by Ko W.H, Chapter 15, 1985, pp. 197-210.
Shichiri M., et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9 (3), May-Jun. 1986, pp. 298-301.
Shichiri M., et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” Preliminary Communication, Lancet, vol. 2, Nov. 20, 1982, pp. 1129-1131.
Shichiri, et al., “In Vivo Characteristics of Needle-Type Glucose Sensor-Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Implantable Glucose Sensors—The State of the Art, Hormone and Metabolic Research Supplement Series, 1988, vol. 20, pp. 17-20.
Shults M.C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41 (10), Oct. 1994, pp. 937-942.
Sieminski, et al., “Biomaterial-Microvasculature Interactions,” Biomaterials, 2000, vol. 21, pp. 2233-2241.
Sigma-Aldrich Corp. “Nafion® 117 Solution Product Description, Product No. 70160,” retrieved from https//:http://www.sigmaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternalProd on Apr. 7, 2005, 1 page.
Sigma-Aldrich Corp., “Cellulose Acetate,” Product Description, Product No. 419028, St. Louis, MO, 2005, 1 page.
Skyler J.S., “The Economic Burden of Diabetes and the Benefits of Improved Glycemic Control: The Potential Role of a Continuous Glucose Monitoring System,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S7-S12.
Slater-MacLean L., et al., “Accuracy of Glycemic Measurements in the Critically Ill,” Diabetes Technology and Therapeutics, vol. 10 (3), 2008, pp. 169-177.
Smith B., et al., “An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle,” IEEE Transactions on Biomedical Engineering, vol. 45 (4), Apr. 1998, pp. 463-475.
Smith, et al.,“A Comparison of Islet Transplantation and Subcutaneous Insulin Injections for the Treatment of Diabetes Mellitus,” Computers in Biology and Medicine, 1991, vol. 21 (6), pp. 417-427.
Smith, “The Scientist and Engineer's Guide to Digital Signal Processing,” California Technical Publishing, 1997-2007, retrieved from http://www.dspguide.com/ch19.htm on Jan. 1, 2009, 2 Pages.
Smooth-On, “Durometer Shore Hardness Scale,” downloaded from https://www.smooth-on.com/page/durometer-shore-hardness-scale/ on May 19, 2016, 1 page.
Sokol L., et al., “Immobilized-Enzyme Rate-Determination Method for Glucose Analysis,” Clinical Chemistry, vol. 26 (1), 1980, pp. 89-92.
Sokolov S., et al., “Metrological Opportunities of the Dynamic Mode of Operating an Enzyme Amperometric Biosensor,” Medical Engineering & Physics, vol. 17 (6), 1995, pp. 471-476.
Sparacino G., et al., “Continuous Glucose Monitoring Time Series and Hypo-Hyperglycemia Prevention: Requirements, Methods, Open Problems,” Current Diabetes Reviews, vol. 4 (3), 2008, pp. 181-192.
Sproule B.A., et al., “Fuzzy Pharmacology: Theory and Applications,” Trends in Pharmacological Sciences, vol. 23 (9), Sep. 2002, pp. 412-417.
Sriyudthsak M., et al., “Enzyme-Epoxy Membrane Based Glucose Analyzing System and Medical Applications,” Biosensors & Bioelectronics, vol. 11 (8), 1996, pp. 735-742.
Steil G.M., et al., “Determination of Plasma Glucose During Rapid Glucose Excursions with a Subcutaneous Glucose Sensor,” Diabetes Technology & Therapeutics, vol. 5 (1), 2003, pp. 27-31.
Stern M., et al., “Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves,” Journal of the Electrochemical Society, vol. 104 (1), Jan. 1957, pp. 56-63.
Sternberg F., et al., “Does Fall in Tissue Glucose Precede Fall in Blood Glucose?,” Diabetologia, vol. 39, 1996, pp. 609-612.
Sternberg R., et al., “Study and Development of Multilayer Needle-type Enzyme Based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
Sternberg, et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development,” Anal Chem, Dec. 1988, vol. 60(24), pp. 2781-2786.
Stokes, “Polyether Polyurethanes: Biostable or Not,” Journal of Biomaterials Applications, Oct. 1988, vol. 3, pp. 228-259.
Street J.O., et al., “A Note on Computing Robust Regression Estimates Via Iteratively Reweighted Least Squares,” The American Statistician, vol. 42 (2), May 1988, pp. 152-154.
Street, et al., “Islet Graft Assessment in the Edmonton Protocol: Implications for Predicting Long-Term Clinical Outcome,” Diabetes, 2004, vol. 53, pp. 3107-3114.
Suh, et al., “Behavior of Fibroblasts on a Porous Hyaluronic Acid Incorporated Collagen Matrix,” Yonsei Medical Journal, 2002, vol. 43 (2), pp. 193-202.
Sumino T., et al., “Preliminary Study of Continuous Glucose Monitoring with a Microdialysis Technique,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20 (4), 1998, pp. 1775-1778.
Supplementary European Search Report for Application No. 20204077.0, dated Jan. 12, 2021, 4 pages.
Takatsu I., et al., “Solid State Biosensors Using Thin-Film Electrodes,” Sensors and Actuators, 1987, vol. 11, pp. 309-317.
Takegami S., et al., “Pervaporation of Ethanol/Water Mixtures Using Novel Hydrophobic Membranes Containing Polydimethylsiloxane,” Journal of Membrane Science, vol. 75, 1992, pp. 93-105.
Tamura T., et al., “Preliminary Study of Continuous Glucose Monitoring with a Microdialysis Technique and a Null Method—A Numerical Analysis,” Frontiers of Medical & Biological Engineering, vol. 10 (2), 2000, pp. 147-156.
Tanenberg R.J., et al., “Continuous Glucose Monitoring System: A New Approach to the Diagnosis of Diabetic Gastroparesis,” Diabetes Technology & Therapeutics, vol. 2, Supplement 1, 2000, pp. S73-S80.
Tang, et al., “Fibrin(ogen) Mediates Acute Inflammatory Responses to Biomaterials,” J.Exp.Med, 1993, vol. 178, pp. 2147-2156.
Tang, et al., “Inflammatory Responses to Biomaterials,” Am J Clin Pathol, 1995, vol. 103, pp. 466-471.
Tang, et al., “Mast Cells Mediate Acute Inflammatory Responses to Implanted Biomaterials,” Proceedings of the National Academy of Sciences of the USA, 1998, vol. 95, pp. 8841-8846.
Tang, et al., “Molecular Determinants of Acute Inflammatory Responses to Biomaterials,” J Clin Invest, 1996, vol. 97, pp. 1329-1334.
Tatsuma T., et al., “Oxidase/Peroxidase Bilayer-Modified Electrodes as Sensors for Lactate, Pyruvate, Cholesterol and Uric Acid,” Analytica Chimica Acta, vol. 242, 1991, pp. 85-89.
Taub M.B., et al., “Numerical Simulation of the Effect of Rate of Change of Glucose on Measurement Error of Continuous Glucose Monitors,” Journal of Diabetes Science and Technology, vol. 1 (5), Sep. 2007, pp. 685-694.
Thijssen P.C.,“A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 2,Optimal Designs, Analytica chimica Acta, vol. 162, 1984, pp. 253-262.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 1,Theory and Simulations, Analytica chimica Acta, 1984, vol. 156, pp. 87-101.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 3,Variance Reduction ,Analytica chimica Acta, 1985, vol. 173, pp. 265-272.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 4,Flow Injection Analysis, Analytica chimica Acta, 1985, vol. 174, pp. 27-40.
Thome V., et al., “(Abstract) Can the Decrease in Subcutaneous Glucose Concentration Precede the Decrease in Blood Glucose Level? Proposition for a Push-Pull Kinetics Hypothesis,” Horm. metab. Res., vol. 27, 1995, p. 53.
Thome-Duret V., et al., “Continuous Glucose Monitoring in the Free-Moving Rat,” Metabolism, vol. 47 (7), Jul. 1998, pp. 799-803.
Thome-Duret V., et al., “Modification of the Sensitivity of Glucose Sensor Implanted into Subcutaneous Tissue,” Diabetes & Metabolism, vol. 22, 1996, pp. 174-178.
Thome-Duret V., et al., “Use of a Subcutaneous Glucose Sensor to Detect Decreases in Glucose Concentration Prior to Observation in Blood,” Analytical Chemistry, vol. 68 (21), Nov. 1, 1996, pp. 3822-3826.
Thompson M., et al., “In Vivo Probes: Problems and Perspectives,” Clinical Biochemistry, vol. 19 (5), Oct. 1986, pp. 255-261.
Tibell, et al., “Survival of Macroencapsulated Allogeneic Parathyroid Tissue One Year after Transplantation in Nonimmunosuppressed Humans,” Cell Transplantation, 2001, vol. 10, pp. 591-599.
Tierney M.J., et al., “Effect of Acetaminophen on the Accuracy of Glucose Measurements Obtained with the GlucoWatch Biographer,” Diabetes Technology & Therapeutics, vol. 2 (2), 2000, pp. 199-207.
Tierney M.J., et al., “The Gluco Watch® Biographer: A Frequent, Automatic and Noninvasive Glucose Monitor,” Annals of Medicine, vol. 32, 2000, pp. 632-641.
Tilbury J.B., et al., “Receiver Operating Characteristic Analysis for Intelligent Medical Systems—A New Approach for Finding Confidence Intervals,” IEEE Transactions on Biomedical Engineering, vol. 47 (7), Jul. 2000, pp. 952-963.
Torjman M.C., et al., “Glucose Monitoring in Acute Care: Technologies on the Horizon,” Journal of Diabetes Science and Technology, vol. 2 (2), Mar. 2008, pp. 178-181.
Trajanoski Z., et al., “Neural Predictive Controller for Insulin Delivery Using the Subcutaneous Route,” IEEE Transactions on Biomedical Engineering, vol. 45(9), 1998, pp. 1122-1134.
Trecroci D., “A Glimpse into the Future-Continuous Monitoring of Glucose with a Microfiber,” Diabetes Interview, Jul. 2002, pp. 42-43.
Tse P.S.H., et al., “Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase,” Biotechnology & Bioengineering, vol. 29, 1987, pp. 705-713.
Turner A.P.F., et al., “Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its Use in a Carbon Monoxide Sensor,” Analytica Chimica Acta, vol. 163, 1984, pp. 161-174.
Turner A.P.F., et al., “Diabetes Mellitus: Biosensors for Research and Management,” Biosensors, vol. 1, 1985, pp. 85-115.
Turner A.P.F., “Amperometric Biosensor based on Mediator-Modified Electrodes,” Methods in Enzymology, 1988, vol. 137, pp. 90-103.
US 7,530,950 B2, 05/2009, Brister et al. (withdrawn)
Unger J., et al., “Glucose Control in the Hospitalized Patient,” Emergency Medicine, vol. 36 (9), 2004, pp. 12-18.
Updike S.J., et al., “A Subcutaneous Glucose Sensor with Improved Longevity, Dynamic Range, and Stability of Calibration,” Diabetes Care, vol. 23 (2), Feb. 2000, pp. 208-214.
Updike S.J., et al., “Continuous Glucose Monitor Based on an Immobilized Enzyme Electrode Detector,” Journal of Laboratory and Clinical Medicine, vol. 93(4), 1979, pp. 518-527.
Updike S.J., et al., “Enzymatic Glucose Sensor: Improved Long-Term Performance in Vitro and In Vivo,” ASAIO Journal, vol. 40 (2), Apr.-Jun. 1994, pp. 157-163.
Updike S.J., et al., “Implanting the Glucose Enzyme Electrode: Problems, Progress, and Alternative Solutions,” Diabetes Care, vol. 5 (3), May-Jun. 1982, pp. 207-212.
Updike S.J., et al., “Laboratory Evaluation of New Reusable Blood Glucose Sensor,” Diabetes Care, vol. 11 (10), Nov.-Dec. 1988, pp. 801-807.
Updike S.J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose Form Inside a Subcutaneous Foreign Body Capsule (FBC),” Edited by Fraser D M, Biosensors in the Body: Continuous in vivo Monitoring, John Wiley & Sons Ltd., New York, 1997, Chapter 4, pp. 117-137.
Updike S.J., et al., “The Enzyme Electrode,” Nature, vol. 214, Jun. 3, 1967, pp. 986-988.
Utah Medical Products Inc., “Deltran—Disposable Blood Pressure Transducers,” Product Specifications, 2003-2006, 6 pages.
Vadgama P., “Diffusion Limited Enzyme Electrodes,” NATO ASI Series: Series C, Math and Phys. Sci, vol. 226, 1988, pp. 359-377.
Vadgama P., “Enzyme Electrodes as Practical Biosensors,” Journal of Medical Engineering & Technology, vol. 5 (6), Nov. 1981, pp. 293-298.
Valdes T.I., et al., “In Vitro and In Vivo Degradation of Glucose Oxidase Enzyme used for an Implantable Glucose Biosensor,” Diabetes Technology & Therapeutics, vol. 2 (3), 2000, pp. 367-376.
Van Den Berghe, “Tight Blood Glucose Control with Insulin in “Real-Life” Intensive Care,” Mayo Clinic Proceedings, vol. 79 (8), Aug. 2004, pp. 977-978.
Velho G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors,” Influence of Needle Material, Diabetes, vol. 38, Feb. 1989, pp. 164-171.
Velho G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor,” Biomed Biochim Acta, vol. 48 (11/12), 1989, pp. 957-964.
Vig, et al., “A Review of Sensor Sensitivity and Stability,” IEEE/EIA International Frequency Control Symposium and Exhibition, 2000, pp. 30-33.
Von Woedtke T., et al., “In Situ Calibration of Implanted Electrochemical Glucose Sensors,” Biomed. Biochim. Acta 48 vol. 11/12, 1989, pp. 943-952.
Wade L.G., “Reactions of Aromatic Compounds,” Organic Chemistry, Chapter 17, 5th edition, 2003, pp. 762-763.
Wagner, et al., “Continuous Amperometric Monitoring of Glucose in a Brittle Diabetic Chimpanzee with a Miniature Subcutaneous Electrode,” Proc. Natl. Acad. Sci. USA, vol. 95, May 1998, pp. 6379-6382.
Wang J., et al., “Highly Selective Membrane-Free Mediator-Free Glucose Biosensor,” Analytical Chemistry, vol. 66 (21), Nov. 1, 1994, pp. 3600-3603.
Wang J., “Electrochemical Glucose Biosensors,” American Chemical Society, Chemical Reviews, Published on Web, Dec. 23, 2007, pp. 1-12.
Wang X., et al., “Improved Ruggedness for Membrane-Based Amperometric Sensors using a Pulsed Amperometric Method,” Analytical Chemistry, vol. 69 (21), Nov. 1, 1997, pp. 4482-4489.
Ward W.K., et al., “A New Amperometric Glucose Microsensor: In Vitro and Short-Term In Vivo Evaluation,” Biosensors & Bioelectronics, vol. 17, 2002, pp. 181-189.
Ward W.K., et al., “Assessment of Chronically Subcutaneous Glucose Sensors in Dogs: The Effect of Surrounding Fluid Masses,” ASAIO Journal, 1999, vol. 45 (6), pp. 555-561.
Ward W.K., et al., “Rise in Background Current Over Time in a Subcutaneous Glucose Sensor in the Rabbit,” Relevance to Calibration and Accuracy, Biosensors & Bioelectronics, vol. 15, 2000, pp. 53-61.
Ward W.K., et al., “Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and Use of a Nonenzyme Containing Electrode,” ASAIO Journal, 2000, pp. 540-546.
Ward, et al., “A Wire-Based Dual-Analyte Sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation,” Diabetes Technology and Therapeutics, 2004, vol. 6 (3), pp. 389-401.
Wientjes K.J.C., “Development of a Glucose Sensor for Diabetic Patients,” (Ph.D. Thesis), 2000, 212 pages.
Wikipedia., “Intravenous Therapy,” http://en.wikipedia.org/wiki/Intravenous_therapy, Aug. 15, 2006, 6 pages.
Wilkins E., et al., “Glucose Monitoring: State of the Art and Future Possibilities,” Med. Eng. Phys., vol. 18 (4), 1996, pp. 273-288.
Wilkins E., et al., “Integrated Implantable Device for Long-Term Glucose Monitoring,” Biosensors & Bioelectronics, vol. 10, 1995, pp. 485-494.
Wilkins E.S., et al., “The Coated Wire Electrode Glucose Sensor,” Horm Metab Res Suppl., vol. 20, 1988, pp. 50-55.
Wilson G., et al., “Biosensors for Real-time in Vivo Measurements,” Biosensors and Bioelectronics, Elsevier Science Ltd, vol. 20, No. 12, Jan. 15, 2005, pp. 2388-2403.
Wilson G.S., et al., “Enzyme-Based Biosensors for In Vivo Measurements,” Chem. Rev., vol. 100, 2000, pp. 2693-2704.
Wilson G.S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose,” Clinical Chemistry, vol. 38 (9), 1992, pp. 1613-1617.
Wolpert H., “Establishing a Continuous Glucose Monitoring Program,” Journal of Diabetes Science and Technology, Mar. 2008, vol. 2 (2), pp. 307-310.
Wood W D., et al., “Hermetic Sealing with Epoxy,” Pave Technology—Mechanical Engineering, Mar. 1990, 3 pages.
Woodward S.C., “How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensors,” Diabetes Care, vol. 5 (3) May-Jun. 1982, pp. 278-281.
Worsley G.J et al., “Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor,” Journal of Diabetes Science and Technology, vol. 2 (2), Mar. 2008, pp. 213-220.
Wright M., et al., “Bioelectrochemical Dehalogenations via Direct Electrochemistry of Poly(ethylene oxide)-Modified Myoglobin,” Electrochemistry Communications, vol. 1, 1999, pp. 609-613.
Written Opinion for Application No. PCT/US2002/023903 dated Nov. 15, 2004, 5 pages.
Wu H., et al., “In Situ Electrochemical Oxygen Generation with an Immunoisolation Device,” Annals New York Academy of Sciences, vol. 875, 1999, pp. 105-125.
Yamasaki Y., et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinica Chimica Acta. 93, 1989, pp. 93-98.
Yamasaki Y., “The Development of a Needle-Type Glucose Sensor for Wearable Artificial Endocrine Pancreas,” Medical Journal of Osaka University, vol. 35 (1-2), Sep. 1984, pp. 25-34.
Yang C., et al., “A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nation Composite Membranes,” Journal of Membrane Science, vol. 237, 2004, pp. 145-161.
Yang Q., et al., “Development of Needle-Type Glucose Sensor with High Selectivity,” Science and Actuators B, vol. 46, 1998, pp. 249-256.
Yang S., et al., “A Glucose Biosensor Based on an Oxygen Electrode: In-Vitro Performances in a Model Buffer Solution and in Blood Plasma,” Biomedical Instrumentation & Technology, vol. 30 (1), 1996, pp. 55-61.
Yang S., et al., “Glucose Biosensors with Enzyme Entrapped in Polymer Coating,” Biomedical Instrument and Technology, Mar./Apr. 1995, vol. 29 (2), pp. 125-133.
Yang X., et al., “Polyelectrolyte and Molecular Host Ion Self-Assembly to Multilayer Thin Films: An Approach to Thin Film Chemical Sensors,” Sensors and Actuators B, vol. 45, 1997, pp. 87-92.
Ye L., et al., “High Current Density Wired' Quinoprotein Glucose Dehydrogenase Electrode,” Analytical Chemistry, vol. 65, 1993, pp. 238-241.
Zamzow K.L., et al., “Development and Evaluation of a Wearable Blood Glucose Monitor,” ASAIO Transactions, vol. 36 (3), 1990, pp. M588-M591.
Zavalkoff S.R., et al., “Evaluation of Conventional Blood Glucose Monitoring as an Indicator of Integrated Glucose Values Using a Continuous Subcutaneous Sensor,” Diabetes Care, vol. 25(9), 2002, pp. 1603-1606.
Zethelius B., et al., “Use of Multiple Biomarkers to Improve the Prediction of Death From Cardiovascular Causes,” N. Engl. J. Med., vol. 358, May 2008, pp. 2107-2116.
Zhang Y., et al., “Electrochemical Oxidation of H2O2 on Pt and Pt + Ir Electrodes in Physiological Buffer and its Applicability to H2O2-Based Biosensors,” J. Electro Analytical Chemistry, vol. 345, 1993, pp. 253-271.
Zhang Y., et al., “In Vitro and In Vivo Evaluation of Oxygen Effects on a Glucose Oxidase Based Implantable Glucose Sensor,” Analytica Chimica Acta, vol. 281, 1993, pp. 513-520.
Zhang, et al., “Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor,” Analytical Chemistry, 1994, vol. 66 (7), pp. 1183-1188.
Zhu, et al., “Fabrication and Characterization of Glucose Sensors Based on a Microarray H2O2 Electrode,” Biosensors & Bioelectronics, 1994, vol. 9, pp. 295-300.
Zhu, et al., “Planar Amperometric Glucose Sensor Based on Glucose Oxidase Immobilized by Chitosan Film on Prussian blue Layer,” Sensors, 2002, vol. 2, pp. 127-136.
Ziaie, et al., “A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation,” IEEE Transactions on Biomedical Engineering, 1997, vol. 44(10), pp. 909-920.