Способ получения волластонита из кремнийсодержащего растительного сырья

14-04-2022 дата публикации
Номер:
RU2770075C1
Контакты: 690022, g. Vladivostok, pr-t 100-letiya Vladivostoka, 159, Institut khimii DVO RAN, Lyakhovskoj O.L.
Номер заявки: 91-11-202107
Дата заявки: 29-06-2021

[1]

Изобретение относится к способам получения синтетического волластонита CaSiO3 из кремнийсодержащего растительного сырья, а конкретно - из рисовой соломы, которая является одним из крупнотоннажных сельскохозяйственных отходов.

[2]

Для России волластонит является нетрадиционным видом сырья и в настоящее время на территории нашей страны в промышленных масштабах практически не добывается, так как разрабатываемые месторождения не могут обеспечить поставку на рынок достаточного количества этого минерала удовлетворительного качества. Природный волластонитовый концентрат приходится закупать за рубежом: в Финляндии, США, КНР и других странах.

[3]

Производство синтетического волластонита, на текущий день получаемого из минерального и техногенного кремнезем-кальцийсодержащего сырья, не удовлетворяет всех потребностей промышленности, в то время как этот минерал является эффективным заменителем ряда материалов: асбеста, каолина, мела, талька, диоксида титана при производстве пигментов, отделочных материалов, изделий на асбестоцементной основе, звуко- и теплоизоляционных материалов и т.д. Волластонит используется в качестве различных добавок в материалы с целью увеличения их прочности, жаростойкости, химической стойкости и износостойкости, улучшения диэлектрических и электрических характеристик, сокращения длительности технологических процессов при их изготовлении, снижения температуры обработки.

[4]

Синтетический волластонит, в отличие от природного, характеризуется высокой дисперсностью, однородностью по составу и строению, низким содержанием примесей. Температура плавления и спекания синтетического волластонита на 100-200°C ниже, чем у природного, плавящегося в диапазоне 1500-1550°C.

[5]

Важными технологическими свойствами как природного, так и синтетического волластонита являются высокая химическая стойкость в различных средах, небольшой удельный вес, низкая теплопроводность, экологическая чистота и безопасность применения. В настоящее время наблюдается рост спроса на синтетические аналоги природного волластонита, при этом для каждой области применения формулируется четкий перечень требований к их свойствам, определяющий допустимое содержание примесей, необходимые структуру, дисперсность, белизну и т.п., и все более актуальной становится проблема получения синтетических силикатов кальция с заданными характеристиками.

[6]

В то же время существует насущная проблема утилизации крупнотоннажных отходов рисового производства, рассматриваемых в качестве сельскохозяйственного биоресурса: рисовой соломы. Однако поскольку из-за высокого содержания кремнезема она плохо горит в печах, медленно гниет и обладает высокой абразивностью при механической переработке, а вследствие высокой степени лигнификации клетчатки мало пригодна в качества корма для сельскохозяйственных животных, часто ее просто сжигают на полях, загрязняя окружающую среду. Для соблюдения международных экологических норм рисовую солому пытаются каким-то образом утилизировать, например, применять в качестве утеплителей в зданиях и сооружениях, использовать в составе добавок при производстве строительных материалов, а также в качестве химического сырья, но широкого применения она пока не находит.

[7]

Известен ряд способов, в которых используется рисовая солома, переработанная в большей либо меньшей степени. Известен способ быстрого возведения малоэтажного здания, описанный в патенте RU2387772, опубл. 2010.04.27, согласно которому стеновые плиты здания изготавливают из бетона с наполнителем из рисовой шелухи и рисовой соломы с применением магнезиального связующего, а также используют эти плиты для утепления потолка. Известный способ не обеспечивает переработку рисовой шелухи и рисовой соломы с получением таких целевых продуктов как волластонит, при этом не позволяет освоить значительные объемы рисовой соломы, которые могли бы решить проблему ее использования.

[8]

Другим примером применения рисовой соломы является способ получения волокнистых полуфабрикатов для целлюлозно-бумажной промышленности (RU2312945, опубл. 2007.12.20), в котором рисовую солому сначала подвергают обескремниванию путем обработки щелочным раствором при нагревании в присутствии катализатора антрахинона, отделяют обескремненное сырье от щелочного раствора и на втором этапе осуществляют его щелочную варку. Двухэтапная щелочная обработка, достаточно жесткие условия щелочной варки (в растворе NaOH в течение не менее 60 мин при 160°C) ограничивают возможности известного способа получением одного полуфабриката, извлечение других целевых продуктов им не предусмотрено.

[9]

Известен способ переработки рисовой шелухи и рисовой соломы с получением в качестве целевых продуктов алюмосиликатов калия или натрия, используемых для приготовления носителей катализаторов, ионообменных материалов, сорбентов, пигментов, пищевых добавок (RU2557607, опубл. 2015.07.27), включающий следующие этапы: получение раствора силиката натрия или калия путем обработки сырья раствором гидроксида натрия или калия при нагревании, смешивание раствора, полученного после отделения остатка не растворившегося сырья, с насыщенным водным раствором сернокислого алюминия Al2(SO4)3⋅18H2O, отстаивание, промывание и прокаливание образовавшегося на этом этапе осадка с получением алюмосиликата, при этом предпочтительным сырьем является проще поддающаяся переработке рисовая шелуха. Получение волластонита известный способ также не обеспечивает.

[10]

Известен способ комплексной переработки отходов рисового производства с получением ряда ценных целевых продуктов, в том числе высокочистого аморфного диоксида кремния (RU2533459, опубл. 2014.11.20). Известный способ является сложным, многооперационным и многоступенчатым, при этом требует использования большого количества различных органических и неорганических реактивов, поскольку он нацелен на одновременное получение целого ряда целевых продуктов, однако волластонит в их число не входит.

[11]

Малазийскими учеными (Shamsudin R., Ismail H., Abdul Hamid M.A. The Suitability of Rice Straw Ash as a Precursor for Synthesizing β-Wollastonite // Materials Science Forum.2016. Vol. 846. pp. 216-222) предложен способ утилизации рисовой соломы с получением синтетического β-волластонита. Компоненты реакционной смеси (кристобалит, полученный из рисовой соломы, и предварительно прокаленный при 1100°C известняк) подвергают автоклавной обработке в течение 8 ч при температуре 135°C. Затем продукт реакции обжигают в течение 3 ч при температуре 950°C. Полученный β-волластонит имеет средний размер частиц 38,2 мк и плотность 3,1 г/см3. Недостатками известного способа являются необходимость предварительной энергозатратной подготовки исходного сырья (соломы и известняка), а также длительный последующий обжиг продукта автоклавной обработки, при этом разработчиками отмечено, что для получения однородного по составу материала при использовании рисовой соломы необходимо более длительное время реакции по сравнению с рисовой шелухой.

[12]

Наиболее близким к заявляемому является (RU2133218, опубл. 1999.07.20) способ получения высокодисперсных кремнеземсодержащих порошков, которые могут быть использованы в производстве пигментов, красителей, наполнителей для строительных материалов, шихты для получения волластонита. Согласно известному способу, для получения неокрашенных порошков приводят во взаимодействие раствор, содержащий силикат натрия, в качестве которого используют жидкое стекло с силикатным модулем 2,4-4,2, предварительно разбавленное водой в соотношении 1:(0,5-1,0), и хлорид кальция CaCl2⋅Н2О, взятый с избытком 1,1-1,5 от стехиометрически необходимого, активно перемешивают реакционную смесь с осаждением гидросиликатов кальция и гидратированного кремнезема в качестве целевого продукта, отделяют, промывают и высушивают полученный осадок.

[13]

Наличие в компонентах исходного сырья (техническом жидком натриевом стекле) растворимых соединений-хромофоров с высокой вероятностью становится причиной окрашивания получаемого порошка и лишает его белизны. Согласно известному способу, в этих случаях на втором этапе обработки в полученный порошок силикатов кальция дополнительно вводят добавку-краситель, преимущественно растворимую соль металла-хромофора, для придания пигменту определенного цвета.

[14]

Наличие примесных элементов приводит к появлению дефектов кристаллической решетки, нарушающих правильность кристаллической структуры и ухудшает устойчивость полученных порошков по отношению к ультрафиолетовому излучению.

[15]

Кроме того, в описании известного способа не указаны размеры частиц получаемого высокодисперсного порошка и/или его удельная поверхность, а визуально установить различие в размерах частиц высокодисперсного порошка невозможно, в то время как размер частиц полученного материала во многом определяет его свойства, определяющие область его возможного применения. Отсутствие данных по дисперсности не позволяет судить о таких важных для пигмента свойствах как укрывистость и способность к диспергированию, и оценить целесообразность его использования для получения пигмента. Кроме того, однородность размеров частиц полученного порошка имеет важное значение для получения материала хорошего качества при его смешивании с другими компонентами.

[16]

Задачей изобретения является разработка способа получения из рисовой соломы дисперсного волластонита, обладающего необходимыми свойствами для использования его при получении пигментов для лаков, красок и других видов покрытий, при производстве композиционных материалов, устойчивых к ультрафиолетовому облучению, а именно, высокой отражательной способностью и белизной, выраженной стойкостью по отношению к ультрафиолетовому излучению, однородностью размеров составляющих его частиц.

[17]

Технический результат способа заключается в повышении отражательной способности и белизны получаемого дисперсного волластонита, увеличении его стойкости к ультрафиолетовому излучению за счет приготовления порошка силикатов кальция с узким распределением частиц по размерам, не содержащего примеси металлов-хромофоров, а также за счет формирования бездефектной кристаллической структуры, не включающей примесных атомов.

[18]

Указанный технический результат достигают способом получения волластонита, согласно которому приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный осадок, содержащий гидросиликат кальция и гидратированный кремнезем, промывают его и высушивают, в котором, в отличие от известного, в качестве раствора, содержащего силикат натрия, используют щелочной экстракт, полученный обработкой измельченной, очищенной от пыли, промытой и высушенной на воздухе рисовой соломы 1М раствором гидроксида натрия NaOH при 80-90°C в течение 60-80 минут с отделением непрореагировавшего твердого волокнистого остатка соломы, при этом хлорид кальций используют в виде 5% раствора, который применяют в расчетном количестве, обеспечивающем в реакционной смеси мольное соотношение Са:Si=1,0:(1,0-2,0), полученный осадок прокаливают при температуре 900-1100°C в течение 1-2 часов с получением волластонита.

[19]

Предпочтительно промывание полученного осадка дистиллированной водой перед прокаливанием проводят до нейтральной реакции промывных вод для полного удаления растворимых компонентов соломы, осадок отфильтровывают и высушивают на воздухе при температуре 80-85°C.

[20]

В предпочтительном варианте осуществления способа твердый волокнистый остаток не прореагировавшей в результате щелочной обработки рисовой соломы направляют в качестве сырья на переработку для получения целлюлозных материалов.

[21]

Способ осуществляют следующим образом.

[22]

Стебли рисовой соломы измельчают на части длиной 5-10 см, продувают потоком воздуха для удаления сухой пыли, промывают водой и высушивают на воздухе при 80-85°C.

[23]

Подготовленное сырье помещают в подходящую емкость с плотной крышкой, заливают 1М раствором гидроксида натрия NaOH при Т:Ж=1:10, нагревают до 80-90°C и выдерживают при этой температуре в течение 60-80 мин. В этих условиях происходит экстрагирование из рисовой соломы кремнийсодержащих соединений.

[24]

Обескремненный твердый остаток рисовой соломы, содержащий до 55% волокнистого продукта, отделяют от щелочного раствора, складируют в накопителе для последующего использования в качестве сырья для производства целлюлозных материалов.

[25]

К выделенному щелочному раствору, содержащему экстрагированные из рисовой соломы кремнийсодержащие вещества, при активном перемешивании добавляют 5% раствор хлорида кальция CaCl2 в расчетном количестве, обеспечивающем мольное соотношение Са:Si=1,0:(1,0-2,0).

[26]

Образовавшийся объемный осадок, содержащий гидросиликат кальция и гидратированный кремнезем, отмывают дистиллированной водой от растворимых соединений-хромофоров до их полного удаления, о котором свидетельствует нейтральная реакция промывных вод, затем отфильтровывают и высушивают на воздухе при температуре 80-85°C.

[27]

Волластонит CaSiO3 получают прокаливанием высушенного осадка при температуре в интервале 900-1000°C в течение 1,0-1,5 часов

[28]

Для оценки стабильности получаемого материала к воздействию различных видов облучения, в том числе к ультрафиолетовому облучению, и его способности отражать свет исследовали спектры отражения (Беленький Е.Ф., Рискин И.В. Химия и технология пигментов - Л.: Химия, 1974).

[29]

На основе полученных спектров отражения определяли белизну полученного материала, которая в данном случае является одной из важнейших технических характеристик материала и отражает его декоративность.

[30]

Белизну обычно определяют путем измерения коэффициентов отражения (R) либо с помощью цветовых характеристик. Величину белизны (W) полученного силикатного порошка вычисляют по разности коэффициентов отражения ρх в двух участках видимого спектра электромагнитного излучения (Беленький Е.Ф., Рискин И.В. Химия и технология пигментов - Л.: Химия, 1974 - С. 60):

[31]

W=R430-(R670-R430)=2R430-R670,

[32]

где W - белизна; R430 и R670 - коэффициенты отражения, соответственно, для длины волны λ1=430 нм и λ2=670 нм

[33]

Примеры конкретного осуществления способа

[34]

Для определения элементного состава полученных дисперсных образцов применяли энергодисперсионный рентгенофлуоресцентный метод с использованием спектрометра EDX-800HS фирмы "Shimadzu" (Япония). Анализ проводили без учета легких элементов с использованием программного обеспечения спектрометра. Относительная погрешность определения не превышала ±2%.

[35]

Распределение частиц волластонита по размеру определяли на лазерном анализаторе частиц Analysette-22 NanoTec/MicroTec/XT ("Fritsch", Германия).

[36]

Спектры отражения полученных дисперсных образцов регистрировали с помощью спектрофотометра Hitachi U-3010 в диапазоне длин волн 190-900 нм с использованием сферы для измерения полного (зеркального и диффузного) отражения. Для регистрации спектров отражения полученный порошок волластонита прессовали в таблетки.

[37]

Пример 1

[38]

В реакционную емкость вносили навеску 400 г предварительно измельченной, очищенной от пыли, промытой и высушенной рисовой соломы, добавляли 4 л 1М раствора гидроксида натрия NaOH (из расчета Т:Ж=1:10) и выдерживали при температуре 90°C в течение 60 минут. После отделения твердого остатка обескремненной рисовой соломы от щелочного раствора, содержащего экстрагированные из соломы кремнийсодержащие вещества, к 3,5 л последнего, при активном перемешивании добавили 700 мл 5% раствора хлорида кальция, содержащего 35 г CaCl2, что обеспечило мольное соотношение Са:Si, равное 1,0:1,0. Образовавшийся объемный осадок силикатов кальция отмыли дистиллированной водой до нейтральной реакции промывных вод для удаления растворимых хромофорных соединений, отфильтровали и высушили на воздухе при температуре 80°C с получением 58 г сухого порошка. После прокаливания порошка в течение 1 часа при 900°C получено 51 г порошка, содержащего, по данным рентгенофазового анализа, аморфную фазу и волластонит CaSiO3 моноклинной модификации со следующими параметрами кристаллической ячейки: а - 15.42600; b - 7.32000; с - 7.06600; α=90.000; β=95.400; γ=90.000. Содержание основных элементов в полученном продукте, масс. %: Si - 70.4; Са - 27.5; Al - 1.1; K - 0.54.

[39]

Анализ распределения частиц синтезированного волластонита по размерам до и после прокаливания свидетельствует, что основная масса частиц (до 80%), как показывает приведенная на фиг. 1 гистограмма распределения размеров частиц волластонита, имеет размеры от 10 до 40 мкм

[40]

Белизна волластонита, полученного по примеру 1, согласно приведенному на фиг. 2 спектру отражения, составляет 88% в диапазоне длин волн от 190 до 900 нм.

[41]

Пример 2

[42]

В реакционную емкость вносили навеску 400 г предварительно подготовленной рисовой соломы, добавляли 4 л 1М раствора гидроксида натрия NaOH (из расчета Т:Ж=1:10) и 80 минут выдерживали сырье в щелочи при температуре 80°C. Дальнейшую обработку с отделением твердого остатка соломы от щелочного раствора проводили по примеру 1: к 3,5 л выделенного щелочного раствора добавляли 350 мл 5% раствора хлорида кальция, содержащего 17,5 г CaCl2,. Образовавшийся объемный осадок также обрабатывали по примеру 1, затем получали волластонит CaSiO3 прокаливанием высушенного осадка в течение 1,5 ч. при температуре 1000°C.

[43]

Получено 38 г дисперсного волластонита.

[44]

Согласно данным рентгенофазового анализа, в результате прокаливания получены волластонит CaSiO3 моноклинной модификации (параметры кристаллической ячейки идентичны параметрам кристаллической ячейки волластонита, синтезированного по примеру 1), и кварц SiO2 (параметры кристаллической ячейки: а - 4.91344; b - 4.91344; с - 5.40524; α=90.000; β=90.000; γ=120.000). Содержание основных элементов в полученном продукте, масс. %: Si - 72.1; Са - 26.8; Al - 0.6; K - 0.54.

[45]

Анализ распределения частиц синтезированного волластонита по размерам до и после прокаливания при 1000°C в течение 1,5 ч показал, что основная масса частиц (до 80%) имеет размеры от 10 до 60 мкм. Результаты измерения приведены в виде гистограммы на фиг. 3.

[46]

Согласно полученному спектру отражения, приведенному на фиг. 4, белизна полученного дисперсного волластонита составляет 92% в диапазоне длин волн от 190 до 900 нм.

[47]

Таким образом, дисперсный волластонит, полученный из сырья растительного происхождения (рисовой соломы) предлагаемым способом, обладает белизной не менее 88%, обеспечивающей его успешное применение в производстве пигментов для лаков, красок и других видов покрытий. Пигменты активно используются для придания материалам определенного цвета и ряда дополнительных свойств, способствующих увеличению срока их эксплуатации и улучшению защитных функций. Кроме того, он с успехом может применяться в качестве наполнителя в композиционных материалах, устойчивых к ультрафиолетовому облучению.

[48]

В основу предлагаемого способа заложена достаточно простая технологическая схема с использованием доступных и попросту дешевых реактивов, при этом в качестве сырья идет крупнотоннажный отход производства риса - рисовая солома, которая используется практически без остатка. Одновременно с целевым продуктом получают сырье для целлюлозной промышленности, что в совокупности обеспечивает высокую рентабельность предлагаемого способа.



[49]

Изобретение может быть использовано в производстве лакокрасочных и композиционных материалов. Для получения волластонита приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный при этом осадок, содержащий гидросиликат кальция и гидратированный кремнезем, промывают его и высушивают. В качестве раствора, содержащего силикат натрия, используют щелочной экстракт, полученный обработкой измельченной, очищенной от пыли, промытой и высушенной на воздухе рисовой соломы 1М раствором NaOH при 80-90°С в течение 60-80 мин с отделением непрореагировавшего твердого волокнистого остатка соломы. Хлорид кальция используют в виде 5%-ного раствора, который берут в расчетном количестве, обеспечивающем в реакционной смеси мольное соотношение Са:Si=1:(1,0-2,0). Осадок прокаливают при температуре 900-1000°С в течение 1,0-1,5 ч с получением волластонита. Твердый волокнистый остаток рисовой соломы, не прореагировавшей в результате щелочной обработки, направляют на переработку в качестве сырья для получения целлюлозных материалов. Изобретение позволяет получить синтетический дисперсный волластонит из отхода производства риса для применения в качестве пигмента, повысив его отражательную способность, белизну и устойчивость к ультрафиолетовому излучению. 2 з.п. ф-лы, 2 пр., 4 ил.



1. Способ получения волластонита, согласно которому приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный при этом осадок, содержащий гидросиликат кальция и гидратированный кремнезем, промывают его и высушивают, отличающийся тем, что в качестве раствора, содержащего силикат натрия, используют щелочной экстракт, полученный обработкой измельченной, очищенной от пыли, промытой и высушенной на воздухе рисовой соломы 1М раствором гидроксида натрия NaOH при 80-90°С в течение 60-80 минут с отделением непрореагировавшего твердого волокнистого остатка соломы, при этом хлорид кальция используют в виде 5%-ного раствора, который берут в расчетном количестве, обеспечивающем в реакционной смеси мольное соотношение Са:Si=1:(1,0-2,0), полученный осадок прокаливают при температуре 900-1000°С в течение 1,0-1,5 часов с получением волластонита.

2. Способ по п. 1, отличающийся тем, что полученный осадок перед прокаливанием промывают дистиллированной водой до нейтральной реакции промывных вод, отфильтровывают и высушивают на воздухе при температуре 80-85°С.

3. Способ по п. 1, отличающийся тем, что твердый волокнистый остаток не прореагировавшей в результате щелочной обработки рисовой соломы направляют в качестве сырья на переработку для получения целлюлозных материалов.



Цитирование НПИ

ПАНАСЕНКО А.Е. и др., Синтез волластонита из щелочных экстрактов соломы риса, Новые материалы и перспективные технологии, Шестой междисциплинарный научный форум с международным участием, Сборник материалов, Москва, 23-27 ноября 2020 года, т. II, сс. 181-184.
Получить PDF