Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 18475. Отображено 200.
20-07-2008 дата публикации

СПОСОБ ПОЛУЧЕНИЯ 1,2,4-ТРИФЕНИЛБЕНЗОЛА

Номер: RU2329245C2

Изобретение относится к способу получения 1,2,4-трифенилбензола, который находит применение в промышленности тонкого химического синтеза, фармацевтической промышленности и в качестве пластификатора. Способ заключается в предварительном формировании в атмосфере инертного газа (аргон, азот) в среде толуола комплекса никеля (I) NiCp(PPh3)2 посредством взаимодействия 1 мольной части комплекса никеля (0) Ni(PPh)4 с 1 мольной частью комплекса Ni(Cp)2 в течение 20-30 минут при температуре 20-25°С, после чего к полученному толуольному раствору добавляется фенилацетилен, мольные отношения фенилацетилен:толуол:Ni=200:400:1. Реакцию циклотримеризации фенилацетилена ведут при температуре 20°С и атмосферном давлении. Технический результат - упрощение способа и повышение выхода целевого продукта.

Подробнее
27-03-2011 дата публикации

КАТАЛИЗАТОР ГИДРООЧИСТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Номер: RU2414963C2

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки тяжелых нефтяных фракций, содержащий активные компоненты: [Si·(WO3)12], в количестве 1,0-9,0 мас.%; [P·(WO3)12], в количестве 1,0-9,0 мас.%; [Si·(МоО3)12], в количестве 4,0-22,0 мас.%; [Р·(МоО3)12], в количестве 6,0-22,0 мас.%; промотор активного компонента - оксид никеля NiO, в количестве 3,0-8,0 мас.%; модификаторы носителя - V2O5 в количестве 0,5-5,0% масс. и SnO2, в количестве 0,1-4,0 мас.%; оксид алюминия Al2O3, в количестве 84,4-21,0 мас.%. Описан также способ приготовления указанного выше катализатора, включающий пропитку носителя пропиточным раствором соединений молибдена и никеля, заключающийся в том, что проводится синтез и пропитка модифицированного носителя: в пептизированный одноосновной кислотой гидроксид алюминия вводится V2O5, SnCl4·5H2O, H4[Si(W12O40)]·10H2O, H4[P(W12O40)]·10H2O, проводят упаривание смеси исходных соединений до остаточной влажности 60-70%, формование ...

Подробнее
29-02-2024 дата публикации

РЕАКТИВИРОВАННЫЕ КАТАЛИЗАТОРЫ ГИДРООЧИСТКИ ДЛЯ ПРИМЕНЕНИЯ В СНИЖЕНИИ ВЫБРОСОВ СЕРЫ

Номер: RU2814491C2

Изобретение относится к способу обработки газообразного потока в процессе обработки отходящих газов, при этом способ включает контактирование газообразного потока с катализатором, который был ранее использован в процессе гидроочистки, и который был реактивирован в процессе реактивации перед контактированием газообразного потока в процессе обработки отходящих газов, причем газообразный поток включает одно или более серосодержащих веществ, выбранных из группы, состоящей из элементарной серы (Sx), диоксида серы (SO2), карбонилсульфида (COS) и сероуглерода (CS2), и при этом при контактировании газообразного потока с реактивированным катализатором в присутствии водорода (H2) происходит превращение одного или более серосодержащих веществ в сероводород (H2S), и при этом катализатор включает либо кобальт и молибден, нанесенные на оксид алюминия, либо никель и молибден, нанесенные на оксид алюминия, и при этом процесс реактивации включает регенерацию или восстановление, и причем регенерация включает ...

Подробнее
21-05-2024 дата публикации

ТЕХНОЛОГИЯ ПОВЫШЕНИЯ ТЕПЛОТВОРНОЙ СПОСОБНОСТИ УГЛЕРОДСОДЕРЖАЩЕГО ТОПЛИВА

Номер: RU2819605C2

Изобретение относится к способу увеличения теплотворной способности углеродсодержащего топлива путем каталитической гидрогенизации и трансформации при температуре 400-700°С и нормальном давлении. Способ характеризуется тем, что в качестве катализатора используют оксиды или фториды урана и их смеси с вовлечением в процесс воды в количестве, необходимом для образования моноокиси углерода СО. При сжигании продуктов гидрогенизации теплотворная способность увеличивается на 25% по сравнению с исходным топливом. 2 з.п. ф-лы, 4 табл., 3 пр., 1 ил.

Подробнее
27-05-2016 дата публикации

КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА

Номер: RU2585610C2

Изобретение относится к пористому катализатору для получения водорода путем парового реформинга. Предлагаемый пористый катализатор содержит алюминий и магний, а также дополнительно содержит бор и никель. Бор присутствует в количестве 0,1-20 мас.% в расчете на общую массу катализатора. Данный пористый катализатор содержит поры, имеющие средний размер пор в интервале 0,1-50 нм. Предлагаемый катализатор обладает высокой каталитической активностью и стабильностью. Изобретение относится также к способу получения указанного катализатора и способу получения водорода по реакции парового реформинга в присутствии этого катализатора. 3 н. и 16 з.п. ф-лы, 8 табл., 4 ил., 13 пр.

Подробнее
10-08-2012 дата публикации

СПОСОБ ПРЕДОТВРАЩЕНИЯ ОСАЖДЕНИЯ ФУМАРОВОЙ КИСЛОТЫ ПРИ ПОЛУЧЕНИИ АНГИДРИДА МАЛЕИНОВОЙ КИСЛОТЫ

Номер: RU2458057C2
Принадлежит: БАСФ СЕ (DE)

Изобретение относится к усовершенствованному способу предотвращения осаждений фумаровой кислоты при получении ангидрида малеиновой кислоты со следующими стадиями: а) поглощение ангидрида малеиновой кислоты из смеси продуктов, полученной в результате частичного окисления бензола, олефинов, имеющих 4 атома углерода или н-бутана, в органическом растворителе или воде в качестве поглотителя, b) отделение ангидрида малеиновой кислоты от поглотителя, содержащего фумаровую кислоту, причем регенерированный таким образом поглотитель, содержащий фумаровую кислоту, полностью или частично каталитически гидрируют и полностью или частично возвращают на стадию поглощения (а), при этом фумаровая кислота подвергается гидрированию до янтарной кислоты. Способ позволяет предотвратить осаждения на деталях оборудования и вызванные вследствие этого засорения, очистительные работы и отключения. 15 з.п. ф-лы, 8 пр.

Подробнее
27-05-2014 дата публикации

КАТАЛИЗАТОРЫ

Номер: RU2517700C2

Изобретение относится к области катализа. Описаны способы приготовления предшественника катализатора, включающие на первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°C с получением прокаленного промежуточного продукта; и затем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, причем ни одну из неорганических солей кобальта, использованных на второй стадии приготовления, не используют на первой стадии приготовления. Описаны синтезы углеводородов в присутствии катализаторов, полученных описанным выше способом. Технический результат - увеличение активности катализатора ...

Подробнее
20-03-2014 дата публикации

ЛАКУНАРНЫЙ ГЕТЕРОПОЛИАНИОН СТРУКТУРЫ КЕГГИНА НА ОСНОВЕ ВОЛЬФРАМА ДЛЯ ГИДРОКРЕКИНГА

Номер: RU2509729C2
Принадлежит: ИФП ЭНЕРЖИ НУВЕЛЛЬ (FR)

Изобретение предназначено для химической промышленности и может быть использовано в катализаторах процессов гидрокрекинга, гидроконверсии, гидроочистки. Для получения гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей вольфрам, к гетерополивольфрамовым кислотам добавляют x+y/2 эквивалентов гидроксида бария. Затем катионы Baзамещают катионами Niв результате ионного обмена на катионообменных смолах, предварительно подвергнутых обмену с катионами Ni. Полученное гетерополисоединение имеет формулу NiAWO,zHO, а в одном из вариантов имеет формулу NiAWO,zHO, где А выбрано из фосфора, кремния и бора, y=0 или 2, x=3,5, если А означает фосфор, x=4, если А означает кремний, x=4,5, и z есть число от 0 до 36. Атомы никеля не замещают атомы вольфрама, а находятся в положении противоиона в структуре указанного соединения. Изобретения обеспечивают высокое отношение Ni/W и выход более 80%. 5 н. и 6 з.п. ф-лы, 2 ил., 4 табл., 4 пр.

Подробнее
24-03-2022 дата публикации

КАТАЛИЗАТОР НА ОСНОВЕ ФУРАНОВОГО СОЕДИНЕНИЯ И ЕГО ПРИМЕНЕНИЕ В СПОСОБЕ ГИДРООБРАБОТКИ И/ИЛИ ГИДРОКРЕКИНГА

Номер: RU2768503C2
Принадлежит: ИФП ЭНЕРЖИ НУВЕЛЛЬ (FR)

Изобретение относится к катализатору с добавкой фуранового соединения, к способу его получения и его применению в области гидрообработки и/или гидрокрекинга. Описан катализатор гидрообработки и/или гидрокрекинга углеводородных фракций, содержащий подложку на основе оксида алюминия, или оксида кремния, или алюмосиликата, по меньшей мере один элемент группы VIII, выбранный из кобальта и никеля, по меньшей мере один элемент группы VIB, выбранный из вольфрама и молибдена, и фурановое соединение, выбранное из фурфурилового спирта, 5-(гидроксиметил)фурфурола, 2-фуральдегида, 5-метил-2-фуральдегида, 2-ацетилфурана, метил-2-фуроата, фурфурилацетата, где содержание элемента группы VIB, выраженное в оксиде металла группы VIB, составляет от 5 до 40 мас.% от общего веса катализатора, а содержание элемента группы VIII, выраженное в оксиде металла группы VIII, составляет от 1 до 10 мас.% от общего веса катализатора, и где содержание фуранового соединения составляет от 1 до 45 мас.% от общей массы катализатора ...

Подробнее
20-11-2007 дата публикации

СПОСОБ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ АЦЕТИЛЕНОВ

Номер: RU2310639C2

Изобретение относится к усовершенствованному способу удаления ацетиленовых соединений из потоков углеводородов, включающему приведение в контакт потока углеводородов, содержащего первую концентрацию ацетиленовых соединений и олефинов, с катализатором, состоящим из несульфидированного металлического никеля на носителе либо состоящим из несульфидированного металлического никеля на носителе, модифицированного такими металлами, как Мо, Re, Bi или их смеси, причем указанный несульфидированный никель присутствует на носителе в количестве, превосходящем, по меньшей мере, на 5% количество, необходимое для селективного гидрирования, в присутствии водорода в первой реакционной зоне при температуре и давлении, а также концентрации водорода, способствующих гидрированию ацетиленовых соединений, и выделение указанного углеводородного сырья, имеющего вторую концентрацию ацетиленовых соединений, которая ниже, чем первая концентрация. Преимущество способа заключается в повышенной селективности при удалении ...

Подробнее
27-09-2010 дата публикации

НОВЫЙ НИКЕЛЬОРГАНИЧЕСКИЙ СИГМА-КОМПЛЕКС-ПРЕКАТАЛИЗАТОР ОЛИГОМЕРИЗАЦИИ ЭТИЛЕНА

Номер: RU2400488C1

Изобретение относится к никельорганическому сигма-комплексу формулы ([NiBr(Xy)(bpy)], где Xy=2,6-диметилфенил, bpy=2,2'-бипиридил). Указанный комплекс проявляет высокую каталитическую активность в процессе олигомеризации этилена при сохраняющейся хорошей растворимости в углеродных растворителях, что позволяет проводить процесс олигомеризации в полностью гомогенных условиях. 1 з.п. ф-лы, 1 табл., 1 ил.

Подробнее
14-07-2017 дата публикации

НИКЕЛЕВЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРЕНОВ

Номер: RU2625452C1

Изобретение относится к области каталитической химии, а именно разработке никелевого катализатора гидрирования аренов в наноразмерных системах, которое может быть использовано в химической промышленности, в частности при производстве циклогексана, циклогексанола, циклогесиламина и других продуктов гидрирования. Изобретение относится к катализатору гидрирования, содержащему соединение никеля(II) и восстановитель, при этом в качестве исходного соединения никеля(II) используют безводный бис(ацетилацетонат)никеля(II), а в качестве восстановителя - диэтилэтоксиалюминий (AlEt(OEt)) при следующем мольном соотношении компонентов: [Ni(acac)]:[AlEt(OEt)]=1:(2÷10). Технический результат заключается в разработке никелевого катализатора, обладающего высокой каталитической активностью. 7 табл., 36 пр.

Подробнее
10-08-2010 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВЫХ ПРОПИТОЧНЫХ КАТАЛИЗАТОРОВ ДЛЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССОВ, НАПРИМЕР ДЛЯ КОНВЕРСИИ УГЛЕВОДОРОДОВ

Номер: RU2396117C1

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, для окислительно-восстановительных процессов. Описан способ получения пропиточных никелевых катализаторов для окислительно-восстановительных процессов, например для конверсии углеводородов, включающий пропитку носителя раствором азотнокислых солей никеля и алюминия с последующей сушкой и прокаливанием, при этом носитель перед пропиткой подогревают до температуры выше температуры конденсации пара пропитывающего раствора, а пропитывающий раствор имеет температуру ниже температуры кипения. Технический эффект - сокращение количества циклов пропитки и повышение активности катализатора. 1 з.п., 1 табл.

Подробнее
15-07-2022 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МЕДЬ-НИКЕЛЬ-ОКСИД-УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2776277C1

Изобретение относится к способу получения медь-никель-оксид-углеродных композиционных материалов, пригодных в качестве катализаторов в реакциях органического синтеза. В способе получения медь-никель-оксид-углеродного композиционного материала осуществляют карбонизацию древесных отходов лесозаготавливающих производств размером 1-20 мм путем нагрева древесных отходов до температуры от 700 до 800°С в атмосфере инертного газа, выдерживания при конечной температуре нагрева в течение 10-120 мин, охлаждения полученного карбонизата до 500°С в атмосфере инертного газа, осуществления последующего охлаждения карбонизата до комнатной температуры в атмосфере воздуха. Карбонизат импрегнируют раствором нитрата меди (2) и/или никеля (2) в азотной кислоте с получением суспензии. Далее активируют указанную суспензию путем нагрева в реакторе до температуры 500-550°С и выдерживают ее при этой температуре. Осуществляют промывку полученного материала водой до нейтральной среды и сушку композиционного материала ...

Подробнее
20-08-2003 дата публикации

КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ И ИХ КИСЛОРОДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ ИЗ СИНТЕЗ-ГАЗА

Номер: RU2210432C1

Изобретение относится к катализаторам и способам получения углеводородов и их кислородсодержащих производных из смеси СО и водорода (синтез-газа). Предложен катализатор получения углеводородов и/или их кислородсодержащих производных из синтез-газа, содержащий не менее 0,4 г/см3 совокупности фаз, представляющей собой фазу каталитически активного металла, закрепленную на фазе подложки оксидной природы, оказывающей активное влияние на дисперсность фазы активного металла или другие ее физико-химические свойства, при этом тело катализатора имеет проницаемость не менее 5•10-15 м2. Предложен способ получения углеводородов и/или их кислородсодержащих производных, включающий пропускание синтез-газа через одно или несколько тел концентрированного проницаемого катализатора. При этом предпочтительно, чтобы один из линейных размеров тела катализатора был сопоставим с наименьшим линейным размером реактора. Технический результат: катализатор позволяет проводить синтез углеводородов и/или их кислородсодержащих ...

Подробнее
10-12-2000 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ЖИДКОФАЗНОЙ ОЛИГОМЕРИЗАЦИИ ОЛЕФИНОВ

Номер: RU2160158C2

Изобретение относится к области органической химии и катализа, в частности к способу приготовления катализаторов олигомеризации олефинов C3-C4 в различных видах газового сырья, что может быть использовано в нефтехимии, например в процессах переработки пропан-пропиленовой и бутан-бутиленовой фракции крекинга. Описывается способ приготовления катализатора жидкофазной олигомеризации олефинов C3-C4, предусматривающий получение никельсиликатной или никельалюмосиликатной композиции путем контактирования водных растворов солей никеля с носителем-силикатом или алюмосиликатом, сушку и прокаливание, отличающийся тем, что композицию получают соосаждением солей никеля с силикагелем или алюмосиликатом в водном растворе аммиака при рН 8-10 с последующим фильтрованием суспензии, формованием массы прессованием или экструзией с гидроксидом алюминия. Способ позволяет получать высокоэффективный, селективный и стабильный катализатор жидкофазной олигомеризации пропилена и бутиленов, работающий при умеренных ...

Подробнее
27-12-2000 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ИЗ РЕАКЦИОННОЙ ГАЗОВОЙ СМЕСИ, СПОСОБ ПОЛУЧЕНИЯ ВТОРОГО СИНТЕЗ-ГАЗА, СПОСОБ ПОЛУЧЕНИЯ ХИМИЧЕСКОГО ПРОДУКТА, ИСПОЛЬЗУЮЩЕГО СИНТЕЗ-ГАЗ И ИСПОЛЬЗУЮЩЕГО ВТОРОЙ СИНТЕЗ-ГАЗ

Номер: RU2161120C2
Принадлежит: Би Джи ПЛС (GB)

Изобретение относится к производству синтез-газа и синтезу химических продуктов. Способ получения синтез-газа (по существу смесь водорода и монооксида углерода) из смеси метана и кислорода, содержащей частично окисляющийся метан, включает приведение реагирующей газовой смеси при температуре от 100 до 950oC и при давлении до 150 бар в контакт с определенным катализатором на основе никель-алюминиевого Feitknecht-соединения/алюминосиликатной минеральной глины. Полученный синтез-газ может быть смешан с дополнительным кислородом и дополнительно частично окислен без подвергания промежуточной стадии сжатия, чтобы получить второй синтез-газ, подходящий для непосредственного использования в последующем процессе получения химического продукта, такого как метанол. Данное изобретение позволяет проводить процесс в небольших реакторах. 5 с и 16 з.п.ф-лы, 1 ил., 3 табл.

Подробнее
27-06-1999 дата публикации

НИКЕЛЕВЫЙ КАТАЛИЗАТОР НА НОСИТЕЛЕ ДЛЯ ПОЛУЧЕНИЯ БОГАТОГО ВОДОРОДОМ И/ИЛИ МОНООКИСЬЮ УГЛЕРОДА ГАЗА И СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО ГАЗА

Номер: RU2132228C1
Принадлежит: Хальдор Топсеэ А/С (DK)

Описывается никелевый катализатор на носителе для получения богатого водородом и/или моноокисью углерода газа путем парового риформинга азотсодержащего углеводородного сырья, который дополнительно содержит медь при следующем соотношении компонентов, мас.%: никель - 5-50; медь - 0,03-0,5; носитель - остальное, и способ получения богатого водородом и/или моноокисью углерода газа путем пропускания смеси азотсодержащих углеводородов и пара и/или двуокиси углерода через катализаторный слой, включающий указанный никелево-медный катализатор на носителе, при повышенных температурах и под давлением с последующим выделением целевого продукта. Технический результат состоит в существенном снижении образования аммиака в процессе получения богатого водородом и/или моноокисью углерода газа путем парового рифоминга азотсодержащего углеводородного сырья и тем самым уменьшении общих производственных затрат. 2 с. и 1 з.п.ф-лы.

Подробнее
20-06-1999 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ

Номер: RU2131770C1

Катализатор селективного гидрирования получают термокаталитическим пиролизом попутного нефтяного или природного газа при 310-960oС, объемной скорости подачи сырья 800-1200 ч-1 в течение 0,3-10 ч в присутствии интерметаллического соединения Zr-Ni-H в качестве гидрирующего агента с последующим отсевом, фракционированием образовавшейся катализаторной массы на молекулярных ситах фракции 113-192 мм. Катализатор пригоден для селективного гидрирования триеновых углеводородов в смеси с ароматическими углеводородами. 4 табл.

Подробнее
20-03-2007 дата публикации

СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛИМЕРИЗУЮЩЕЙ АКТИВНОСТИ КАТАЛИЗАТОРОВ ГИДРИРОВАНИЯ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИЙ

Номер: RU2295719C1

Изобретение относится к нефтехимической промышленности, а именно к способу определения полимеризующей активности катализаторов, которые могут быть использованы для гидрирования непредельных углеводородов, содержащихся в составе жидких продуктов пиролиза. В качестве величины, отражающей полимеризующую активность катализаторов гидрирования, используют значение оптической плотности жидкой смеси, содержащей непредельные соединения и выдержанной в контакте с катализатором в течение заданного времени при повышенной температуре. Определение активности осуществляют путем сравнения оптической плотности жидкой смеси, содержащей непредельные углеводороды, до и после ее контакта с катализатором. Для измерения оптической плотности жидкой смеси может быть использовано стандартное лабораторное оборудование - фотоколориметр или спектрофотометр. Способ позволяет сравнивать полимеризующую активность катализаторов непосредственно по отношению к промышленному сырью. 2 з.п. ф-лы, 3 табл., 2 ил.

Подробнее
20-12-1995 дата публикации

КАТАЛИЗАТОР ДЛЯ ГИДРИРОВАНИЯ НЕПРЕДЕЛЬНЫХ, АРОМАТИЧЕСКИХ МОНОЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ И КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ

Номер: RU2050189C1

Использование: в каталитической химии, в частности в никелевых катализаторах с низким содержанием металла на носителе, применяемых в процессах гидрирования ароматических моноциклических углеводородов и карбонильных соединений. Сущность изобретения: катализатор содержит никель на носителях (оксиде алюминия, двуокиси кремния) и комплексную соль вольфрама ф-лы: Men[SiMe′Om] где Me K, Cs, Li, Ni; Me′ Co, Ni, W, Cr; n-4; m-40, когда Me′ W; Me Me (+1) K, Li, Cs; n 2 при Me Me(+2) Ni; n 6, m 39, когда Me′ Ni или Со, Me Me(+1); n 3, когда Me (+2); n 5, m 39, когда Me′ и Me Me(+1). Соотношение компонентов в катализаторе, мас. никель 1 5, комплексная соль вольфрама указанной ф-лы 2 6 и носитель остальное. 5 табл.

Подробнее
10-11-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ МЕТИЛИРОВАННЫХ ТРЕТИЧНЫХ АМИНОВ

Номер: RU2095343C1
Принадлежит: Сека С.А. (FR)

Изобретение относится к новому способу получения метилированных третичных амино, который заключается в осуществлении реакции гексаметилентетрамина с различными азотированными предшественниками в присутствии водорода и катализатора гидрирования. Реакция очень селективная, метилирование производят только на азотах аминов и нитрилов. Способ позволяют легко получать метилированные амины, соответствующие начальным производным, таким как жирные моно- или полиамины, аминоспирты, эфирамины, нитрилы, аминонитрилы и т.д. 14 з.п. ф-лы.

Подробнее
10-10-2008 дата публикации

КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДОРГАНИЧЕСКИХ ПРОДУКТОВ БЫСТРОГО ПИРОЛИЗА БИОМАССЫ

Номер: RU2335340C1

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации продуктов быстрого пиролиза биомассы и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородорганических продуктов быстрого пиролиза лигноцеллюлозной биомассы, содержащий благородный металл в количестве не более 5.0 мас.% или содержащий никель, или медь, или железо, или их комбинацию в несульфидной восстановленной форме в количестве не более 40 мас.% и переходные металлы в несульфидной оксидной форме в количестве не более 40 мас.%, носитель - остальное. Описаны три варианта способа приготовления катализатора, предусматривающие нанесение переходных металлов на носитель методом пропитки носителя растворами соединений металлов, или одновременным осаждением гидрооксидов или карбонатов переходных металлов в присутствии стабилизирующего носителя, или катализатор формируют совместным сплавлением/разложением кристаллогидратов нитратов переходных металлов совместно ...

Подробнее
20-03-2008 дата публикации

КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБЫ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА ОТ МОНООКСИДА УГЛЕРОДА

Номер: RU2319542C1

Изобретение относится к способам очистки от монооксида углерода газовых смесей, содержащих водород, в том числе газовых смесей, содержащих кроме водорода диоксид углерода CO2. Этот процесс является важной стадией получения чистого водорода или водородсодержащего газа, например в процессе синтеза аммиака. Описан катализатор очистки водородсодержащего газа от монооксида углерода, представляющий собой проницаемый композитный материал, содержащий совокупность фаз каталитически активного металла VIII группы или их сплава, носителя оксидной природы и металлической меди или сплава, содержащего металлическую медь, при этом размер зерен, образующих композит, составляет менее 0.5 мм, а проницаемость композита превышает 10-14 м2. Описаны также способ приготовления такого катализатора и способы очистки водородсодержащего газа от монооксида углерода с его использованием. Технический результат - высокая селективность и активность катализатора. 4 н. и 16 з.п. ф-лы, 3 ил.

Подробнее
10-11-2011 дата публикации

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ КОНВЕРСИИ УГЛЕВОДОРОДОВ

Номер: RU2432991C1

Изобретение относится к технологии приготовления катализаторов для конверсии углеводородов и может быть использовано в химической промышленности, например, для получения технического водорода из природного газа и технологических газов, необходимых в синтезе аммиака и метанола. Описан способ приготовления катализатора для конверсии углеводородов, включающий смешение глинозема с функциональной добавкой и 20%-й азотной кислотой до получения однородной пластичной пасты, ее формование, провяливание, высушивание и прокаливание, двукратную пропитку полученного носителя в растворах нитратов никеля и алюминия с последующей сушкой и прокаливанием, при этом смешение глинозема с функциональной добавкой совмещают с размолом и механохимической активацией в течение 45-60 мин, после чего вводят азотную кислоту в количестве 0,18-0,20 л/кг материала, полученную при дальнейшем смешении пластичную пасту формуют в блоки сотовой структуры, прокаливание перед пропиткой носителя осуществляют при температуре 1200 ...

Подробнее
29-05-2023 дата публикации

СПОСОБ МЕХАНОХИМИЧЕСКОГО СИНТЕЗА НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ

Номер: RU2796743C1

Изобретение относится к химической промышленности, а именно к механохимическому синтезу катализаторов гидрирования. Описан способ механохимического синтеза никелевого катализатора гидрирования, заключающийся в нанесении на 15,956-18,898 г носителя - силикагеля непосредственно в исходном сухом виде 23,402-26,344 г никеля (II) азотнокислого 6-водного, с помощью планетарной мельницы при расходуемой энергии 0,96-1,93 кДж/г.кат., что соответствует 40 Гц на частотном преобразователе и времени работы 60 и 120 с, при этом дополнительно к смеси никеля (II) азотнокислого 6 водного и носителя добавляют 23,402-42,3 г нитрата аммония, выдерживании при 170°С в течение 200 минут, кальцинировании при 470°С в течение не менее двух часов до прекращения изменения массы образца, восстановлении при 470°С, со скоростью нагрева 4°C/мин, в токе водорода со скоростью 30 см3/мин, после процедуры восстановления прекращении подачи водорода и отжиге катализатора в остаточной среде водорода при давлении, сниженном до ...

Подробнее
05-12-2023 дата публикации

Способ получения металл-оксид-углеродного композиционного материала из технической сажи после пиролиза отработанных автопокрышек

Номер: RU2808980C1

Изобретение относится к способу получения металл-оксид-углеродных композиционных материалов, использующихся в качестве катализаторов в реакциях органического синтеза и термолиза. В качестве углеродной основы используют техническую сажу в виде измельченной фракции с размерами частиц менее 1 мм, полученной при пиролизе отработанных автопокрышек и характеризующейся зольностью 10,1-15,8 мас.% и содержанием серы 1,0-2,7 мас.%. Проводят импрегнирование указанной сажи раствором нитрата металла (или смесью растворов нитратов металлов) в азотной кислоте с получением суспензии. Выдерживают суспензию при комнатной температуре в течение 30-180 мин, затем нагревают в реакторе со скоростью 120-600 °С/ч до температуры 650-800°С в инертной неокислительной атмосфере. Выдерживают в инертной неокислительной атмосфере при этой температуре в течение 15-120 мин до получения композиционного материала. Причем в качестве растворов нитрата металла в азотной кислоте используют раствор нитрата меди (II), и/или нитрата ...

Подробнее
10-01-2011 дата публикации

КАТАЛИЗАТОР ОКИСЛИТЕЛЬНОЙ ДЕМЕРКАПТАНИЗАЦИИ НЕФТИ И НЕФТЯНЫХ ДИСТИЛЛЯТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2408426C1

Изобретение относится к катализаторам окислительной очистки нефти и нефтяных дистиллятов, в частности топочного мазута, от меркаптанов и сероводорода и может быть использовано в нефтеперерабатывающей промышленности. Описан способ получения катализатора для окислительной демеркаптанизации нефти и нефтяных дистиллятов на основе комплекса производного переходного металла с азотсодержащим лигандом, отличающийся тем, что готовят смесь вода - моноэтаноламин в соотношении 20/80% об., в указанной смеси растворяют расчетные количества производного переходного металла и алифатического амина при мольном соотношении их от 1/1 до 1/4, полученный таким образом гомогенный катализатор выдерживают далее при температуре 80-95°С в течение 0,5-1,0 час и при этом через раствор катализатора пропускают воздух, причем в качестве производного переходного металла используют хлориды, ацетаты, оксихлориды или нафтенаты кобальта, никеля или меди, а в качестве азотсодержащих лигандов используют алифатические амины.

Подробнее
27-11-1996 дата публикации

СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Номер: RU2069774C1

Использование: в двигателе внутреннего сгорания. Сущность изобретения: на поверхности деталей камеры сгорания двигателя наносят катализатор, в качестве которого используют медь или оксид меди, или композицию, содержащую металл или оксид металла, выбранные из группы: марганец, никель, хром или их смесь в количестве 0,001 - 90,9 мас.%. Композиция может дополнительно содержать металл или его оксид, выбранные из группы: платина, палладий в количестве 0,0001 - 0,1 мас.%. Катализатор наносят на поверхности деталей камеры сгорания, контактирующие с топливом и/или топливовоздушный смесью , и/или с продуктами сгорания, толщиной 0,01 - 10 мкн. Предлагаемый способ с данным каталитическим покрытием уменьшает расход топлива на 5,5 - 10%, обеспечивает снижение нагарообразования и задымленность соответственно на 70 - 90% и на 46 - 70%, снижение содержания СО, NOx в продуктах сгорания соответственно на 20 - 29% и 20 - 35%, повышает мощность двигателя на 2,0 - 4,0%. 2 с. и 11 з. п. ф-лы, 1 табл.

Подробнее
20-09-1998 дата публикации

ТЕКСТИЛЬНЫЙ ОБЪЕМНЫЙ ВОЛОКНИСТЫЙ КАТАЛИЗАТОР

Номер: RU2118908C1

Изобретение относится к материалам для осуществления каталитических процессов и может быть использовано в химической, нефтехимической, легкой промышленности, в частности для очистки сточных вод и газовых выбросов от сульфидов. Текстильный объемный волокнистый катализатор в виде полотна (например, связанного методом полуфанг) по данному изобретению состоит из носителя из мононитей и модифицированных ионсодержащих комплексных нитей из полиакрилонитрильных волокон, включающих один или два иона металлов переменной валентности, причем в текстильном полотне соотношение массы мононитей носителя к массе ПАН комплексных нитей 60.7 - 82.3%, линейная плотность ПАН нитей 32/2 - 32/4 текс, поверхностный модуль петли 3.17 - 3.35, суммарная линейная плотность нитей основы и утка 156.3 - 211.7 текс. Предложенный катализатор увеличивает скорость процесса окисления сульфидов и расширяет область применимости. 1 табл., 1 ил.

Подробнее
20-04-2012 дата публикации

СПОСОБ ФОРМИРОВАНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ КАТИОННОГО КОМПЛЕКСА НИКЕЛЯ ДЛЯ АДДИТИВНОЙ ПОЛИМЕРИЗАЦИИ НОРБОРНЕНА

Номер: RU2448122C1

Изобретение относится к способу формирования высокоэффективного катализатора на основе катионного комплекса никеля для аддитивной полимеризации норборнена (NB). Одним из современных направлений в области аддитивной полимеризации норборнена является получение высокочистых полинорборненов для нужд оптоэлектроники, машиностроения и медицины. В связи с особенностями областей применения к полинорборненам предъявляют высокие требования по чистоте. Способ осуществляют путем формирования катализатора полимеризации норборнена на основе катионного комплекса, где в качестве комплекса используют комплекс никеля(О) Ni(COD)2 в сочетании с эфиратом трифторида бора(В) при соотношениях Ni:B, лежащих в диапазоне от 2 до 10, с последующим введением мономера. В зависимости от задачи реакцию проводят в толуоле при различных концентрациях никеля и соотношениях Ni:B:NB и при температурах от 0 до 50°С. Продуктом реакции является растворимый в циклогексане, толуоле, хлорбензоле, хлороформе полинорборнен. Способ ...

Подробнее
22-11-2021 дата публикации

Способ очистки потоков насыщенных углеводородов от примесей

Номер: RU2760126C1

Изобретение относится к области очистки газовых смесей и может использоваться при добыче и переработке газа, на газоочистительных сооружениях и в других отраслях промышленности, которые требуют получения более чистого газового потока. Предложен способ очистки газовых потоков насыщенных углеводородов от оксидов азота, в том числе от N2O, в котором поток очищаемого газа пропускают через емкостный аппарат, заполненный катализатором, перед входом в реактор осуществляется подача водорода в очищаемый поток, при этом аппарат заполнен гетерогенным катализатором на основе оксида алюминия с нанесенными металлами, выбранными из группы: Pt, Pd, Pt/Pd и Ni, содержащим от 0,1 до 3% активного металла по массе, а остальное оксид алюминия в качестве связующего, причем поток пропускают при температуре от 150 до 280°С, давлении от 1,5 до 3,0 МПа, объемной скорости от 500 до 3000 ч-1, при этом перед пуском аппарата в работу проводят восстановление катализатора азотоводородной или метано-водородной смесью.

Подробнее
20-10-2000 дата публикации

КАТАЛИЗАТОР ДЛЯ КОНВЕРСИИ УГЛЕВОДОРОДОВ И СПОСОБ ЕКАТАЛИЗАТОР ДЛЯ КОНВЕРСИИ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ ГО ПОЛУЧЕНИЯ

Номер: RU2157730C1

Изобретение относится к производству катализаторов конверсии углеводородов. Сущность изобретения: катализатор для конверсии углеводородов, включающий оксиды никеля, титана, алюминия, дополнительно содержит оксид бора при следующем соотношении компонентов, мас.%: оксид никеля 10,5 - 13,5, оксид титана 0,2 - 0,6, оксид бора 0,3 - 0,9 и оксид алюминия - остальное. Сущность способа получения катализатора для конверсии углеводородов в том, что в качестве титансодержащего соединения используют гидрид титана, в шихту дополнительно вводят борную кислоту и технический углерод, в качестве связующего используют смесь парафина, воска и олеиновой кислоты и формование носителя осуществляют методом литья при избыточном давлении 0,4 - 2,0 МПа и температуре 70 - 75oC. При этом для приготовления шихты глинозем, гидрид титана, борную кислоту и технический углерод берут в следующем массовом соотношении соответственно, %: 91,2 - 97,5 : 0,5 - 1,0 : 1,0 - 2,8 : 1,0 - 5,0. Компоненты связующего берут в следующем ...

Подробнее
20-06-2000 дата публикации

КАТАЛИЗАТОР И СПОСОБ ОЛИГОМЕРИЗАЦИИ НИЗШИХ ОЛЕФИНОВ

Номер: RU2151001C1

Изобретение относится к катализаторам и к способам получения олигомеров низших олефинов в ходе газо- или жидкофазной олигомеризации олефинов из этиленовой, пропан-пропиленовой и бутан-бутиленовой газовых фракций или их смеси. Описывается катализатор олигомеризации низших олефинов, содержащий в своем составе никельалюмосиликат, цеолит и оксид алюминия при следующем соотношении компонентов, мас.%: NiO 10-80, Al2O3 1-50, SiO2 10-60, цеолит 1-40. В качестве цеолитной добавки можно использовать цеолиты группы пентасилов, ZSM-4, морденит. Также описывается способ олигомеризации низших олефинов с использованием в качестве катализатора вышеуказанного катализатора. Использование катализаторов предложенного состава позволяет существенно снизить температуру проведения процесса и увеличить выход жидких олигомеров (полимер-бензина) на пропущенные олефины. 2 с.п. ф-лы, 7 табл.

Подробнее
10-06-2019 дата публикации

КАТАЛИЗАТОР ДЛЯ ГИДРОГЕНИЗАЦИОННОЙ КОНВЕРСИИ ГЛИЦЕРИНА В ПРОСТЫЕ СПИРТЫ, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ГИДРОГЕНИЗАЦИОННОЙ КОНВЕРСИИ ГЛИЦЕРИНА В ПРОСТЫЕ СПИРТЫ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Номер: RU2691068C1

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит наночастицы никеля на носителе, в качестве которого взят пористый сульфатированный оксид алюминя с содержанием сульфата 2,0-7,2 мас.%, при следующем соотношении компонентов, мас.%: никель - 5-30, сульфатированный оксид алюминия - остальное. Катализатор готовят путем пропитки сульфатированного оксида алюминия водным раствором соединения никеля формулы Ni(NO)⋅6HO с последующей сушкой при температуре 110°С, прокаливанием при температуре 350°С и восстановлением в токе водорода при температуре 500°С. При этом сульфатированный оксид алюминия получают путем смешения водного раствора изопропилата алюминия азотной кислотой и обработки полученной смеси сульфатом аммония при температуре 90-95°С. Способ гидрогенизационной ...

Подробнее
27-06-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНА И ЕГО ПРОИЗВОДНЫХ

Номер: RU2486167C1

Изобретение относится к усовершенствованному способу получения циклогексана и его производных общей формулыR=H,.Способ позволяет получатьнасыщенные углеводороды и их производные, которые находят применение как полупродукты в органическом синтезе. Способ заключается в гидрировании циклогексена или его производного, выбранного из 1-(N-пиперидино)пиклогексена-1, 1-(N-морфолино)циклогексена-1 или 1,4-дициклогекс-1-енилпиперазина, газообразным водородом при атмосферном давлении водорода в присутствии нанокатализатора в среде тетрагидрофурана при температуре 50-70°С в течение 5-6 часов с последующим выделением целевого продукта. В качестве нанокатализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) алюмогидридом лития in situ. Способ позволяет проводить процесс при атмосферном давлении с использованием катализатора, получаемого по более простой технологии, что приводит к упрощению способа в целом. Кроме того, способ может быть использован для получения более ...

Подробнее
20-09-2013 дата публикации

СОСТАВ И СПОСОБ СИНТЕЗА КАТАЛИЗАТОРА ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДСОДЕРЖАЩЕГО УГЛЕВОДОРОДНОГО СЫРЬЯ

Номер: RU2492922C1

Изобретение относится к катализаторам и их получению. Описан катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, содержащий соединения молибдена (15-25 мас.% MoO) и никеля (4.0-6.0 мас.% NiO), диспергированные на поверхности модифицированного углеродным покрытием алюмооксидного носителя (содержание углерода 1-3 мас.%, удельная площадь поверхности не менее 200 м/г, удельный объем пор 0.8-1.1 см/г, средний диаметр пор не менее 100 Ǻ). Описан способ синтеза указанного выше катализатора. Технический результат - повышение активности и устойчивости катализатора. 2 н. и 1 з.п. ф-лы, 2 табл., 9 пр.

Подробнее
27-08-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА

Номер: RU2491123C1

Изобретение относится к каталитической химии, в частности к способу получения алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива методом самораспространяющегося высокотемпературного синтеза через стадию интерметаллидных сплавов. Способ получения катализатора заключается в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного ...

Подробнее
09-12-2021 дата публикации

Катализатор защитного слоя для реакторов гидрогенизационной переработки нефтяного сырья и способ его получения

Номер: RU2761528C1

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрогенизационной переработки нефтяных фракций и способам их получения. Описан катализатор защитного слоя для реакторов гидрогенизационной переработки нефтяного сырья на высокопористом ячеистом носителе, содержащего активные компоненты, который отличается тем, что включает привитый слой γ-оксида алюминия в количестве до 2,3-9% масс., имеющий мезопоры диаметром 3-7 нм и макропоры диаметром 800-2000 нм, содержащий в качестве активных компонентов молибден или вольфрам в виде фосфорно-молибденовой или фосфорно-вольфрамовой кислот в количестве 1,00-3,00% масс. в пересчете на оксиды, а также никель или кобальт в виде цитратов в количестве 0,35-1,05% масс. в пересчете на оксиды, катализатор имеет форму цилиндров диаметром 20-50 мм, высотой 10-30 мм с размером ячеек 0,8-2,5 мм. Также разработан способ получения катализатора. Технический результат - разработанный катализатор защитного слоя для реакторов гидрогенизационной ...

Подробнее
10-03-1998 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ

Номер: RU96117610A
Принадлежит:

Способ получения никелевого катализатора гидрирования, включающий смешение основного карбоната никеля с алюмооксидным носителем в присутствии водного раствора аммиака с последующей сушкой, прокаливанием, измельчением, смешением с графитом и таблетированием, отличающийся тем, что в качестве алюмооксидного носителя используют смесь высокотемпературной и низкотемпературной форм оксида алюминия в соотношении от 0,05:0,95 до 0, 50:0,50 (в пересчете на Al2O3) и в качестве низкотемпературной формы оксида алюминия берут бемит, псевдобемит, гидраргиллит, γ-Al2O3 или ρ -Al2O3, а в качестве высокотемпературной формы - α-Al2O3 или θ-Al2O3.

Подробнее
20-02-2011 дата публикации

КАТАЛИЗАТОР УГЛЕКИСЛОТНОГО РИФОРМИНГА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2009130371A
Принадлежит:

... 1. Катализатор углекислотного риформинга, который преобразовывает исходное газообразное углеводородное сырье под действием диоксида углерода и который используют для получения синтез-газа, содержащего монооксид углерода и водород, причем катализатор углекислотного риформинга содержит ! смесь в качестве основного компонента, которая содержит карбонат, по меньшей мере, одного щелочноземельного металла, выбираемого из группы, состоящей из Ca, Sr и Ba, и каталитический металл, промотирующий реакцию разложения газообразного углеводородного исходного сырья. ! 2. Катализатор углекислотного риформинга по п.1, где каталитический металл является, по меньшей мере, одним металлом, выбираемым из группы, состоящей из Ni, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe и Мо. ! 3. Катализатор углекислотного риформинга по п.1 или 2, дополнительно содержащий ATiO3 (A означает, по меньшей мере, один щелочноземельный металл, выбираемый из группы, состоящей из Ca, Sr и Ва). !4. Способ получения катализатора углекислотного риформинга ...

Подробнее
10-01-2008 дата публикации

ПЕРЕКРЕСТНОЕ СОЧЕТАНИЕ УГЛЕРОД-УГЛЕРОД, КАТАЛИЗИРУЕМОЕ ПЕРЕХОДНЫМИ МЕТАЛЛАМИ НА ТВЕРДЫХ НОСИТЕЛЯХ

Номер: RU2006122522A
Принадлежит:

... 1. Способ сочетания углеродсодержащих соединений, включающий реакцию (i) первого углеродсодержащего соединения со (ii) вторым углеродсодержащим соединением в присутствии (iii) металла палладия или никеля на твердом катализаторе, включающем соль щелочноземельного металла, и (iv) растворителя, включающего спирт. 2. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид и указанным вторым углеродсодержащим соединением является арилборная кислота. 3. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид и указанным вторым углеродсодержащим соединением является соединение, включающее винильную группу. 4. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является алкилгалогенид и указанным вторым углеродсодержащим соединением является соединение, включающее винильную группу. 5. Способ согласно п.1, в котором указанным первым углеродсодержащим соединением является арилгалогенид ...

Подробнее
20-05-2011 дата публикации

КАТАЛИЗАТОР УГЛЕКИСЛОТНОГО РИФОРМИНГА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2418632C1

Изобретение относится к катализатору углекислотного риформинга, который используют при производстве синтез-газа, содержащего водород и монооксид углерода, путем углекислотного риформинга газообразного углеводородного исходного сырья, к способу производства синтез-газа при использовании катализатора углекислотного риформинга, к способу получения катализатора углекислотного риформинга и к носителю для катализатора углекислотного риформига. Описан катализатор углекислотного риформинга, который преобразовывает исходное газообразное углеводородное сырье под действием диоксида углерода, и который используют для получения синтез-газа, содержащего монооксид углерода и водород, причем катализатор углекислотного риформинга содержит смесь в качестве основного компонента, которая содержит носитель, содержащий карбонат, по меньшей мере, одного щелочноземельного металла, выбираемого из группы, состоящей из Са, Sr и Ва, и каталитический металл, промотирующий реакцию разложения газообразного углеводородного ...

Подробнее
25-11-2024 дата публикации

Способ гидрирования алкиленароматических соединений

Номер: RU2830734C1

Изобретение относится к способу гидрирования алкиленароматических соединений с получением полностью гидрированных циклических углеводородов. Описан способ гидрирования алкиленароматических соединений, заключающийся в непрерывной подаче смеси алкиленароматического соединения и водорода при нагревании на катализатор, представляющий собой наночастицы никеля, нанесенные на оксид алюминия. Наночастицы никеля наносят путем пропитки оксида алюминия при кипячении до обесцвечивания раствором гексагидрата хлорида никеля и карбамида в 7 масс.% водном растворе аммиака, добавления борной кислоты и кипячения в течение 2 часов при массовом соотношении оксида алюминия : гексагидрата хлорида никеля : карбамида : борной кислоты, равном 1:2:2,4:0,6, и последующего восстановления адсорбированного хлорида никеля при температуре 80-100°С в течение 1 часа смесью 0,025 масс.% водного раствора боргидрида натрия и гидразин моногидрата, взятых в мольном соотношении 4:3, с осушкой катализатора в токе водорода при ...

Подробнее
12-02-2020 дата публикации

Состав и способ приготовления катализатора гидрирования диолефинов

Номер: RU2714138C1

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования в составе защитного слоя в процессе гидрооблагораживания нефтяных дистиллятов, состоящий из модифицированного носителя, приготовленного на основе высокопористого ячеистого материала с ячеистостью 10-30 меш и привитого слоя гамма-оксида алюминия, а также нанесенных на носитель биметаллических комплексных соединений металлов VIII и VI групп. Катализатор отличается тем, что высокопористый ячеистый материал имеет открытую пористость не менее 50%, в качестве биметаллических комплексных соединений металлов VIII и VI групп катализатор включает соединения никеля или кобальта и молибдена, а содержание компонентов в прокаленном при температуре 550°С катализаторе составляет, мас.%: высокопористый ячеистый материал ...

Подробнее
16-05-2018 дата публикации

Способ получения вторичных аминов

Номер: RU2654066C1

Изобретение относится к улучшенному способу получения вторичных аминов. Получаемые амины находят применение в фармацевтической, сельскохозяйственной промышленности и при производстве пластических масс. Способ заключается в том, что проводят гидрирование карбонитрилов молекулярным водородом в присутствии наноразмерного никелевого катализатора, при котором наночастицы никеля иммобилизованы на цеолит, преимущественно марки NaX. Согласно способу реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 1500-2000 мл/(кг⋅ч), второй - нитрил, подаваемый с расходом 0,9-2,7 мл/(кг⋅ч), и реакцию ведут при температуре 200-220°С. Катализатор получают путем пропитки цеолита водным раствором гексагидрата хлорида никеля, с последующим восстановлением ионов никеля тетрагидроборатом натрия в воде и сушкой полученного катализатора в потоке водорода непосредственно перед реакцией. Способ позволяет получить вторичные амины симметричного строения с высоким ...

Подробнее
10-07-2018 дата публикации

Никель-графеновый катализатор гидрирования и способ его получения

Номер: RU2660232C1

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы. Причем в качестве носителя он содержит восстановленный оксид графита, представляющий собой чешуйки восстановленного оксида графита. Также изобретение относится к способу получения никель-графенового катализатора гидрирования, включающему диспергирование водного раствора соли никеля Ni(СНСОО)в водной суспензии оксида графита. При этом водную дисперсию оксид графита - Ni(СНСОО)сушат лиофильно с последующим одновременным восстановлением оксида графита и никеля(II) водородом при 300-500°С. Технический результат – высокая эффективность катализатора с улучшением его функциональных характеристик (равномерно распределены нанометровые частицы никеля на поверхности носителя). 2 н.п. ф-лы, 2 ил., 4 пр.

Подробнее
10-05-2015 дата публикации

СПОСОБ РЕГЕНЕРАЦИИ КАТАЛИЗАТОРОВ ГИДРИРОВАНИЯ РАСТИТЕЛЬНЫХ МАСЕЛ

Номер: RU2550515C1

Изобретение относится к способу регенерации никельсодержащего катализатора для проведения процессов гидрирования растительных масел в реакторах с перемешивающим устройством. Предлагаемый способ включает смешивание отработанного катализатора с тугоплавким жиром, формование полученной пасты в виде гранул и охлаждение до температуры окружающей среды. Данный способ регенерации позволяет восстановить химическую активность никелевого катализатора до 100%. 5 з.п. ф-лы, 2 табл., 7 пр.

Подробнее
10-08-1996 дата публикации

МОДИФИЦИРОВАННЫЙ НИКЕЛЕВЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ НА НОСИТЕЛЕ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Номер: RU95107363A
Принадлежит:

Предлагается никелевый катализатор на носителе, модифицированный палладием, в котором концентрация никеля на носителе составляет 0,08 - 0,5 мас.% при соотношении никель : палладий, равном 1 : (1,5 - 0,2), и содержащий железо с концентрацией на носителе не более 0,3 мас.%. Катализатор получают адсорбцией носителем соединений активных металлов из их водных растворов, причем адсорбцию соли никеля ведут при рН 10-12, соли железа при рН 8-10, а в качестве раствора соединения палладия используют раствор его хлоргидроксокомплексов, полученных щелочным гидролизом хлорида палладия при массовом соотношении гидроксида щелочного металла и палладия, равном 0,25 - 0,65 : 1. Катализатор проявляет высокую активность и селективность в процессах восстановления ароматических полинитросоединений, гидроксиламинов или нитрилов в первичные амины, эфиров - в спирты, гидрирования ацетиленов в олефины и парафины, гидрогенолиза фенилгалогенидов с отщеплением галогена.

Подробнее
20-09-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ

Номер: RU95117177A
Принадлежит:

Способ приготовления никелевого катализатора гидрирования растительных масел и жиров путем осаждения на кизельгур сульфата никеля кальцинированной содой с последующими фильтрацией, промывкой, сушкой, восстановлением в водород - содержащем газе и пассивацией азото-воздушной смесью, отличающийся тем, что осаждение ведут из 20-80%-ной суспензии, содержащей одновременно сульфат никеля и кальцинированную соду в мольном соотношении сода : сульфат никеля, равном 1,0-1,5.

Подробнее
27-12-2000 дата публикации

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ЖИДКОФАЗНОЙ ОЛИГОМЕРИЗАЦИИ ОЛЕФИНОВ

Номер: RU99100651A
Принадлежит:

... 1. Способ получения катализатора жидкофазной олигомеризации олефинов С3 -С4, предусматривающий получение никель(алюмо)силикатной композиции в ходе контактирования водных растворов солей никеля с различными носителями (SiO2, Аl2O3 или алюмосиликатами), сушку и прокаливание, отличающийся тем, что соосаждение солей никеля с различными источниками SiO2 (включая алюмосиликаты) с получением аморфного силиката (алюмосиликата) никеля проводят в водном растворе аммиака при рН=8-10 с последующим фильтрованием суспензии, формованием массы прессованием или экструзией с гидроксидом алюминия. 2. Способ по п. 1, отличающийся тем, что добавка оксида алюминия вводится в катализатор на стадии осаждения силиката (алюмосиликата) никеля путем добавления к суспензии водного раствора соли (нитрата) алюминия.

Подробнее
27-05-1996 дата публикации

КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ ВРЕДНЫХ ПРИМЕСЕЙ

Номер: RU94026930A
Принадлежит:

Предложен катализатор для низкотемпературного окисления СО и углеводородов, содержащий никелькобальтовую шпинель, оксид никеля и оксид алюминия. Он отличается повышенным содержанием оксида никеля и пониженным содержанием оксида алюминия и обладает высокой активностью в указанных процессах.

Подробнее
26-05-2025 дата публикации

Катализатор, его применение и способ удаления карбонилсульфида из природного газа

Номер: RU2840458C2

Изобретение относится к химической технологии. Предложен катализатор для удаления карбонилсульфида из природного газа, который содержит 90-97 мас.% носителя, 2-6 мас.% оксида щелочного металла и 1-4 мас.% оксида никеля. Часть носителя представляет собой фазы AlO(OH), χ-Al2O3 и η-Al2O3, массовое соотношение которых в носителе составляет 1:(2-5):(0,2-0,6) соответственно. Предложено применение вышеуказанного катализатора для удаления карбонилсульфида. Способ удаления карбонилсульфида из природного газа включает приведение неочищенного природного газа в контакт с вышеуказанным катализатором при температуре 100-140°С и часовой объемной скорости неочищенного природного газа в диапазоне 1000-5000 ч-1 и дальнейшее разделение полученного природного газа и сероводорода. Группа изобретений позволяет обеспечить высокую степень конверсии карбонилсульфида за счет применения катализатора, обладающего высокой каталитической активностью, стабильностью активности и длительностью срока службы. 3 н. и 7 з.п ...

Подробнее
10-08-1996 дата публикации

МОДИФИЦИРОВАННЫЙ НИКЕЛЕВЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ НА НОСИТЕЛЕ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Номер: RU95107363A1
Принадлежит:

Предлагается никелевый катализатор на носителе, модифицированный палладием, в котором концентрация никеля на носителе составляет 0,08 - 0,5 мас.% при соотношении никель : палладий, равном 1 : (1,5 - 0,2), и содержащий железо с концентрацией на носителе не более 0,3 мас.%. Катализатор получают адсорбцией носителем соединений активных металлов из их водных растворов, причем адсорбцию соли никеля ведут при рН 10-12, соли железа при рН 8-10, а в качестве раствора соединения палладия используют раствор его хлоргидроксокомплексов, полученных щелочным гидролизом хлорида палладия при массовом соотношении гидроксида щелочного металла и палладия, равном 0,25 - 0,65 : 1. Катализатор проявляет высокую активность и селективность в процессах восстановления ароматических полинитросоединений, гидроксиламинов или нитрилов в первичные амины, эфиров - в спирты, гидрирования ацетиленов в олефины и парафины, гидрогенолиза фенилгалогенидов с отщеплением галогена.

Подробнее
22-01-2025 дата публикации

СЕЛЕКТИВНЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АЛКИНОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ

Номер: RU2833480C2

Изобретение может быть использовано в химической промышленности. Предложен катализатор селективного гидрирования алкинов, в котором носитель катализатора представляет собой оксид алюминия или оксид алюминия составляет 80% или более от носителя и имеет бимодальное распределение пор по размерам. Размер мелких пор составляет 15-50 нм, а размер крупных пор составляет 80-500 нм. Катализатор содержит по меньшей мере Pd, Ni и Cu, причем в расчете на 100 % по массе носителя содержание Pd составляет 0,03-0,1 %, содержание Ni составляет 0,5-5 %, массовое отношение Cu к Ni составляет 0,1-1,0:1,0. При этом Ni, Cu и часть Pd получены из микроэмульсии. Диаметр частиц микроэмульсии не меньше, чем максимальный размер мелких пор, и не больше, чем максимальный размер крупных пор. Предложены также способ получения катализатора, способ селективного гидрирования алкинов во фракции С2 и способ селективного гидрирования фракции С2. Группа изобретений позволяет получить катализатор с хорошими антикоксовыми характеристиками ...

Подробнее
18-03-2025 дата публикации

Способ получения оксида никеля

Номер: RU2836558C1

Изобретение относится к химической промышленности, а именно к способам получения оксида никеля. В способе получения оксида никеля используют кристаллогидрат сульфата никеля в виде NiSO4⋅7H2O, получают из него водный раствор. Экстракт надземной части растения и раствор сульфата никеля в соотношении 3:1 с добавлением раствора 2% NaOH непрерывно перемешивают в течение 20-30 минут. Полученную смесь подвергают ультразвуковой обработке в течение 20-30 минут. Образовавшийся осадок промывают от органических остатков в дистиллированной воде. Затем из осадка удаляют максимальное возможное количество супернатанта и сушат в атмосфере воздуха при температуре 80°С. Далее прокаливают в муфельной печи при температуре 400-500°С в течение 30-60 минут и получают оксид никеля. Обеспечивается повышение удельной площади поверхности оксида никеля. 1 ил., 1 табл., 3 пр.

Подробнее
01-01-1944 дата публикации

Способ получения катализатора для гидрогенизации жиров

Номер: SU62863A1
Принадлежит:

Подробнее
30-08-1986 дата публикации

Катализатор для химических процессов

Номер: SU367635A1
Принадлежит:

... 1. КАТАЛИЗАТОР ДЛЯ ХИМИЧЕСКИХ ПРОЦЕССОВ, например, для конверсии угльзодородов, содержащий никель И1ш его соединения, промотор.например окись алкн4иния, и носитель, отличающийся тем, что, с целью повышения термостойкости, механической прочности и снижения термической усадки катализатора, в качестве носителя взят металлургический шлак, напрю^ер, ферротитана, никельбора, ферроборала, железобора.

Подробнее
23-05-1988 дата публикации

Способ получения пентанола-2

Номер: SU1397423A1
Принадлежит:

Изобретение касается производства алифатических спиртов, в чаСт-. ности получения пентанола-2 - полупродукта для синтеза психотропного (этаминала натрия) и наркозного препарата (тиопентала натрия). Цель повышение селективности и упрощение процесса при улучшении качества. Синтез ведут катилитическим гидрированием и метштциклопропилкетбна (МЦК) водородом при 100-150 0 и атмосферном давлении в проточном реакторе. Скорость подачи МЦК 0,05-0,2 ч . В качестве катализатора (КТ) используют двухкомпонентный многослойный контакт с последовательным чередованием 2-6 (4-6) слоев палладия на AljOy и никеля на кизельгуре при содержании Pd/Al Oj 30-60 об.% от общего количества гКТ. Эти условия по вышают селективность процесса с 60 до 92% при конверсии до 100% и 99,7%-HdM содержании целевого продукта . 1 з.п. ф-лы, 2 табл. а ® &) ...

Подробнее
30-05-1993 дата публикации

CATALYST FOR FISCHER-TROPSCH HYDROCARBON SYNTHESIS

Номер: RU1819158C
Автор:
Принадлежит:

Подробнее
30-06-1993 дата публикации

Катализатор для изомеризации углеводородов и способ его приготовления

Номер: SU1824231A1
Принадлежит:

Сущность изобретения, катализатор содержит мае % металлического нике ля и остальное диоксид циркония, модифицированный 0,15-3 мае % сульфат- ионов В колбу загружают гидрид интерме таллического соединения ZrNiHx. где х - - 1-3 Приливают 6-9 М раствор серной кислоты Осадок отделяют и промывают дистиллированной водой Сушат на воздухе Прокаливают при 873 К 3 ч Характеристика катализатора конверсия до 100%, выход изоге сана 52-60% 2с п ф-лы. 1 табл ...

Подробнее
30-12-1988 дата публикации

Способ приготовления селективного никелевого катализатора на носителе для процесса гидрирования

Номер: SU1447396A1
Принадлежит:

Изобретение касается каталитической химии, в частности приготовления Ni-катализатора на носителе для гидрирования полиненасыщенных сислот и их эфиров, содержащихся в .. растительных маслах и животных жирах , до ди- или мононепредельных соединений. Катализатор готовят осаждением никелевой соли гидроксидом . и/или карбонатом натрия. Образующийся осадок гидроксида и/или карбоната никеля на носителе состава: NiCO,-X-Ni(OH),j Y HjO, где ,5-27, Y 1,2-13,5, обрабатывают щелочным агентом - метаборатом щелочного металла с добавлением эквимолярного количества NH4C1 или диметилформамида с общей концентрацией 0,003-0,2 моль/л суспензии. Обработку ведут при рН 10- 13,9 и 20-98 0 в течение 15-120 мин. Затем суспензию фильтруют, промьюа- ют, сушат и восстанавливают осадок водородом. Эти условия увеличивают безопасность процесса и снижают его себестоимость за счет исключения взрывоопасного боргидрида натрия. (Л ...

Подробнее
15-10-1991 дата публикации

Способ получения метана

Номер: SU1684270A1
Принадлежит:

Изобретение относится к нефтехимии, в частности к получению метана. Цель - повышение селективности процесса и конверсии . Получение ведут конверсией смеси окиси углерода и водорода при 260-290°С в присутствии катализатора, имеющего следующее соотношение компонентов , мас.%: никель или кобальт 2-9; углеродное волокно до 100. 1 табл ...

Подробнее
15-06-1984 дата публикации

Катализатор для процесса воздушно-кислородной конверсии метана

Номер: SU1097369A1
Принадлежит:

КАТАЛИЗАТОР ДЛЯ ПРОЦЕССА ВОЗДУШНО-КИСЛОРОДНОЙ КОНВЕРСИИ МЕТАНА , содержащий активный компонент на блочном носителе, отличающийся тем, что, с целью повышения активности, он в качестве активного компонента содержит закись никеля, а в качестве носителя - нитрид кремния при следующем содержании компонентов, мас,%: Закись никеля 11,5-22,0 р -нитрид кремния Остальное ...

Подробнее
25-03-1974 дата публикации

Способ получения третичных аминов

Номер: SU421178A3
Принадлежит:

Подробнее
11-04-2002 дата публикации

Aminosäurekomplexe und ihre Verwendung zur Herstellung von Olefinpolymerisaten

Номер: DE0010047461A1
Принадлежит:

Aminosäurekomplex der allgemeinen Formel I, DOLLAR F1 wobei M ausgewählt wird aus Fe, Co, Ni, Pd, Pt oder Ir, vorzugsweise Ni, bedeutet; Verfahren zu ihrer Herstellung sowie Verwendung zur Polymerisation von Olefinen.

Подробнее
28-07-1977 дата публикации

KUGELFOERMIGE KATALYSATOREN ZUR HERSTELLUNG VON METHAN

Номер: DE0001938079B2
Автор:
Принадлежит:

Подробнее
10-11-1994 дата публикации

Process for the preparation of 3-methoxybutanol and butanol from crotonaldehyde

Номер: DE0004315047A1
Принадлежит:

Published without abstract.

Подробнее
19-01-2012 дата публикации

Microencapsulated catalyst

Номер: US20120016139A1
Принадлежит: REAXA Ltd

The present invention relates to a catalyst system. In particular the invention relates to a catalyst in the form of metal or an alloy that is encapsulated within a polymer shell or matrix. More specifically the invention is directed towards reactive catalytic metals that may be pyrophoric or otherwise reactive in air and/or susceptible to oxidation. In particular, the invention is concerned with catalysts based on nickel. Raney or sponge nickel is highly hazardous: a self-igniting solid; produces hazardous fumes when burning; causes irritation of the respiratory tract, nasal cavities; causes pulmonary fibrosis if inhaled; ingestion may lead to convulsions and intestinal disorders; causes eye and skin irritation; and chronic exposure may lead to pneumonitis and sensitization (“nickel itch”). The invention provides metal catalysts that avoid such problems and have a good shelf life and working life.

Подробнее
21-06-2012 дата публикации

Method of making a catalyst

Номер: US20120157299A1
Принадлежит: ENERGIA TECHNOLOGIES Inc

Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.

Подробнее
21-06-2012 дата публикации

Methods of deoxygenation and systems for fuel production

Номер: US20120157727A1
Принадлежит: ENERGIA TECHNOLOGIES Inc

Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.

Подробнее
05-07-2012 дата публикации

Methods for preparing ethylene glycol from polyhydroxy compounds

Номер: US20120172633A1

This invention provides methods for producing ethylene glycol from polyhydroxy compounds such as cellulose, starch, hemicellulose, glucose, sucrose, fructose, fructan, xylose and soluble xylooligosaccharides. The methods uses polyhydroxy compounds as the reactant, a composite catalyst having active components comprising one or more transition metals of Groups 8, 9, or 10, including iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum, as well as tungsten oxide, tungsten sulfide, tungsten hydroxide, tungsten chloride, tungsten bronze oxide, tungsten acid, tungstate, metatungstate acid, metatungstate, paratungstate acid, paratungstate, peroxotungstic acid, pertungstate, heteropoly acid containing tungsten. Reacting at a temperature of 120-300° C. and a hydrogen pressure of 1-13 MPa under hydrothermal conditions to accomplish one-step catalytic conversion. It realizes efficient, highly selective, high yield preparation of ethylene glycol and propylene glycol from polyhydroxy compounds. The advantage of processes disclosed in this invention include renewable raw material and high atom economy. At the same time, compared with other technologies that converts biomass raw materials into polyols, methods disclosed herein enjoy advantages including simple reaction process, high yield of targeted products, as well as easy preparation and low cost for the catalysts.

Подробнее
18-10-2012 дата публикации

Process for preparing higher hydridosilanes

Номер: US20120263639A1
Принадлежит: EVONIK DEGUSSA GmbH

The invention relates to a method for producing higher hydridosilane wherein at least one lower hydridosilane and at least one heterogeneous catalyst are brought to reaction, wherein the at least one catalyst comprises Cu, Ni, Cr and/or Co applied to a carrier and/or oxide of Cu, Ni, Cr and/or Co applied to a carrier, the hydridosilane that can be produced according to said method and use thereof.

Подробнее
28-03-2013 дата публикации

CATALYST AND METHOD OF CATALYST MANUFACTURE

Номер: US20130079568A1
Принадлежит: JOHNSON MATTHEY PLC

The catalyst of the invention is a particulate catalyst in the form of particles having a minimum dimension of at least 0.8 mm, including a transition metal or a compound thereof dispersed on a porous support material, characterised in that said catalyst particles comprise at least 35% w/w total transition metal; and the transition metal surface area of said catalyst is at least 110 mper gram of transition metal and the tapped bulk density of a bed of the catalyst particles is at least 0.7 g/ml. The method of making a catalyst includes multiple steps of impregnation of a porous support with a metal ammine solution followed by drying, calcination and reduction of the dried material. The catalyst is useful in hydrogenation reactions. 1. A particulate catalyst in the form of particles having a minimum dimension of at least 0.8 mm , comprising a transition metal or a compound thereof dispersed on a porous support material , wherein said catalyst particles comprise at least 35% w/w total transition metal; and the transition metal surface area of said catalyst is at least 110 mper gram of transition metal and the tapped bulk density of a bed of the catalyst particles is at least 0.7 g/ml.2. A catalyst according to claim 1 , n wherein the porous support comprises a transition alumina.3. A catalyst according to claim 1 , wherein the porous support material has a bimodal pore size distribution.4. A catalyst according to claim 3 , wherein the porous support material has a pore size distribution claim 3 , as measured by mercury porosimetry claim 3 , in which at least 20% of the total pore volume is contained in pores having a diameter of from 100 nm-700 nm and at least 30% of the total pore volume is contained in pores having a diameter of from 5 nm-20 nm5. A catalyst according to claim 1 , wherein the porous support material has a pore volume of at least 1.0 ml/g.6. A catalyst according to claim 1 , wherein the porous support is in the form of extruded cylinders or lobed ...

Подробнее
25-04-2013 дата публикации

CATALYST, ELECTRODE, FUEL CELL, GAS DETOXIFICATION APPARATUS, AND METHODS FOR PRODUCING CATALYST AND ELECTRODE

Номер: US20130101920A1
Принадлежит: Sumitomo Electric Industries, Ltd.

Provided are a catalyst, an electrode, a fuel cell, a gas detoxification apparatus, and the like that can promote a general electrochemical reaction causing gas decomposition or the like. A catalyst according to the present invention is used for promoting an electrochemical reaction and is chain particles formed of an alloy particles containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu). 1. A catalyst used for promoting an electrochemical reaction , comprising:an alloy containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu).2. The catalyst according to claim 1 , being chain particles in which particles that have a diameter of 0.5 μm or less and are formed of the alloy are connected to form an elongated shape.3. The catalyst according to claim 2 , wherein the chain particles have branches and form dendritic chain particles in which the branched chain particles are intertwined.4. The catalyst according to claim 1 , wherein the alloy contains 0.5% or less by weight of titanium (Ti).5. The catalyst according to claim 1 , being a woven fabric formed of fibers of the alloy or a metal-fiber woven fabric including a plated layer of the alloy.6. The catalyst according to claim 1 , being a porous plated body formed of the alloy or a porous plated body including a plated layer of the alloy.7. The catalyst according to claim 1 , being particles that are formed of the alloy and have an average diameter of 100 μm or less.8. The catalyst according to claim 1 , being present with a solid electrolyte and disposed in a form of a film of the alloy or a deposit of the alloy so as to cover a surface of the solid electrolyte.9. The catalyst according to claim 1 , wherein oxygen is bonded to a surface of the alloy or the alloy is covered with an oxide layer.10. An electrode formed by sintering the catalyst ...

Подробнее
23-05-2013 дата публикации

Method Of Producing Catalytic Material For Fabricating Nanostructures

Номер: US20130130894A1

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate. 1. A method of fabricating a nano-catalyst comprising:(a) contacting a metal powder with a first solution comprising a complexing agent to produce a complexed metal powder and a residual first solution;(b) separating the complexed metal powder and a substantial portion of the residual first solution from each other;(c) contacting the complexed metal powder with a second solution comprising metal ions to produce (i) a loaded metal powder wherein at least a portion of the metal ions are bound to the complexed metal powder and (ii) a residual second solution;(d) separating the loaded metal powder and substantially all of the residual second solution from each other to produce a dry loaded metal powder; and(e) contacting the metal ions bound to the complexed metal powder with a reducing atmosphere to form the nano-catalyst as metal nanoparticles on the metal powder.2. The method of wherein the complexing agent comprises a chelating agent.3. The method of wherein the complexing agent comprises a coupling ...

Подробнее
06-06-2013 дата публикации

Metal-ligand catalyst formation

Номер: US20130143730A1
Принадлежит: Invista North America LLC

As described herein, nickel treated with sulfur provides a surprisingly effective source of nickel atoms for generating nickel-phosphorus-containing ligand complexes useful as hydrocyanation catalysts.

Подробнее
06-06-2013 дата публикации

Attrition Resistant Supports for Fischer-Tropsch Catalyst and Process for Making Same

Номер: US20130143736A1
Принадлежит: WR Grace and Co Conn

The invention relates to a novel method of preparing attrition resistance spinel supports for Fischer Tropsch catalysts. The process comprises: (a) combining aluminum oxide, metal compound capable of forming spinel phase, and soluble compound of a trivalent aluminum; (b) mixing the combination resulting in (a) in a manner sufficient to form a slurry comprising the aforementioned combination; and (c) processing the mixture of (b) under conditions sufficient to form metal aluminate spinel composition. Metal aluminate spinel, for example, is formed in the last step by calcining the mixture from (b) at a temperature in the range of 700 to 1300° C., but the process is also capable, of producing attrition resistant supports (e.g., having a DI of 5 or less) at a relatively lower temperature in the range of 700 to 1050° C. The invention also produces the attrition resistance with lower metal loadings than that reported for prior attrition resistant spinel supports.

Подробнее
29-08-2013 дата публикации

Process for the Hydrotreatment of Vegetal Materials

Номер: US20130219774A1
Принадлежит: BTG BIOMASS TECHNOLOGY GROUP B.V.

The present invention relates to a process for the hydrotreatment of a vegetal biomass. Specifically, the present invention relates to a process for the hydrotreatment of a vegetal biomass comprising: a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal-metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel. Further, the present invention relates to a metal oxide, mixed metal oxide or metal-metalloid oxide catalyst. Furthermore, the present invention relates to the use of the catalyst. 1. Process for the hydrotreatment of a vegetal biomass comprising:a) subjecting said vegetal biomass to a hydrotreatment in a first reactor, said hydrotreatment comprises contacting said vegetal biomass in an aqueous medium and a metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprising at least 35% by weight of metal oxide, mixed metal oxide, or metal- metalloid oxide relative to the total weight of the catalyst, with hydrogen at a pressure in the range of 10 to 400 bar and at a temperature in the range of 50° C. to 300° C. until a predetermined level of the hydrotreatment of said biomass is obtained and wherein the metal oxide, a mixed metal oxide, or a metal-metalloid oxide catalyst comprises nickel.2. Process according to claim 1 , wherein the process further comprises:b) subjecting the mixture of step a) to a second hydrotreatment in a second reactor and contacting the hydrotreated vegetal biomass in an ...

Подробнее
07-11-2013 дата публикации

Method for producing xylylenediamine

Номер: US20130296609A1
Принадлежит: Mitsubishi Gas Chemical Co Inc

Provided is a method for stably and economically producing xylylenediamine with a high yield and long catalyst service life by hydrogenating dicyanobenzene that is obtained by ammoxidating xylene. By bringing an aqueous basic solution into contact with a dicyanobenzene-absorbed liquid, which is obtained by bringing an ammoxidation reaction gas into contact with an organic solvent, under specified temperature conditions, and subjecting a base and a carboxylic acid in the dicyanobenzene-absorbed liquid to a neutralization reaction so as to form an aqueous phase that contains a water-soluble salt, and then subjecting an organic phase and the aqueous phase to liquid-liquid separation so as to remove the aqueous phase, it is possible to remove the carboxylic acid contained in the dicyanobenzene-absorbed liquid with high selectivity while inhibiting loss of the dicyanobenzene. By subjecting the raw material dicyanobenzene, which is obtained by separating low boiling point compounds from the post liquid-liquid separation organic phase by distillation under reduced pressure, to hydrogenation, xylylenediamine is produced with a high yield and the service life of the hydrogenation catalyst is extended.

Подробнее
21-11-2013 дата публикации

METAL STRUCTURE CATALYST AND PREPARATION METHOD THEREOF

Номер: US20130309165A1
Принадлежит:

Provided are a metal structure catalyst and a method of preparing the same. Particularly, the method includes forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support, and forming metal particles by thermally treating and reducing the metal precipitate formed on the metal support. The metal structure catalyst includes a metal support, a metal oxide layer formed on the metal support, and metal nanoparticles formed on the metal oxide layer. In addition, the metal nanoparticles are uniform and have enhanced binding strength. 1. A method of preparing a metal structure catalyst , comprising:forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support; andforming metal particles by thermally treating and reducing the metal precipitate formed on the metal support.2. The method according to claim 1 , wherein the metal catalyst includes at least one atom selected from the group consisting of nickel claim 1 , ruthenium claim 1 , platinum claim 1 , rhodium claim 1 , ceria and zirconia.3. The method according to claim 1 , wherein a precursor solution of the metal catalyst is at least one selected from the group consisting of a metal nitrate claim 1 , a metal halide claim 1 , a metal acetate claim 1 , a metal sulfate claim 1 , a metal acetoacetate claim 1 , a metal fluoroacetoacetate claim 1 , a metal perchlorate claim 1 , a metal sulfamate claim 1 , a metal stearate claim 1 , a metal phosphate claim 1 , a metal carbonate claim 1 , a metal oxalate and a metal complex.4. The method according to claim 1 , wherein the precipitating agent is at least one selected from the group consisting of KOH claim 1 , NaOH claim 1 , ammonia claim 1 , urea claim 1 , NaCO claim 1 , and KCO.5. The method according to claim 1 , wherein the precipitating agent controls a pH of the ...

Подробнее
12-12-2013 дата публикации

HYDROGEN PRODUCTION CATALYST CONTAINING Ni3Si-BASED INTERMETALLIC COMPOUND, METHOD FOR ACTIVATING THE CATALYST, AND HYDROGEN PRODUCTION METHOD AND DEVICE USING THE CATALYST

Номер: US20130330263A1

A catalyst according to the present invention exhibits a catalytic action to a methanol decomposition reaction or a hydrocarbon steam-reforming reaction in a short time. The present invention provides a catalyst for producing hydrogen gas, using an NiSi-based intermetallic compound. 1. A catalyst for producing a hydrogen gas , comprising an NiSi-based intermetallic compound.2. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound contains 0 to 500 ppm by weight of B with respect to a total weight of a composition containing 10.0 to 28.0% by atom of Si claim 1 , a balance made up of Ni as a major component claim 1 , and inevitable impurities.3. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound comprises at least a βphase having an L1crystal structure.4. The catalyst according to claim 1 , wherein the NiSi-based intermetallic compound subjected to an activation treatment by bringing into contact with gaseous methanol is used for producing the hydrogen gas from hydrocarbon.5. A reaction device comprising a plurality of disk-like members formed of the catalyst according to claim 1 , whereineach of the disk-like members has a plurality of through-holes, andthe plurality of disk-like members is stacked so that the through-holes in the disk-like members adjacent to each other are shifted.6. A method for producing the hydrogen gas from methanol or hydrocarbon by using the catalyst according to .7. A method for producing the hydrogen gas from hydrocarbon claim 1 , comprising the steps of:{'claim-ref': {'@idref': 'CLM-00004', 'claim 4'}, 'heating the catalyst according to to temperatures of 700° C. or higher, and'}bringing a gas comprising hydrocarbon and steam into contact with the heated catalyst.8. A hydrogen production device comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'the catalyst according to ;'}a heating unit for heating the catalyst; anda supply portion for supplying methanol or hydrocarbon ...

Подробнее
19-12-2013 дата публикации

NANOCATALYSTS FOR HYDROCRACKING AND METHODS OF THEIR USE

Номер: US20130334097A1
Принадлежит: Petroraza SAS

Novel catalysts comprising nickel oxide nanoparticles supported on alumina nanoparticles, methods of their manufacture, heavy oil compositions contacted by these nanocatalysts and methods of their use are disclosed. The novel nanocatalysts are useful, inter alia, in the upgrading of heavy oil fractions or as aids in oil recovery from well reservoirs or downstream processing. 1. A catalyst comprising: 'wherein the alumina nanoparticle to nickel oxide nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500.', 'nickel oxide nanoparticles supported on alumina nanoparticles;'}2. A catalyst according to claim 1 , wherein the ratio is in a range of from about 99 to about 400.3. A catalyst according to claim 1 , wherein the nickel oxide (NiO) nanoparticles are present in an amount of about 0.2% to about 1% by weight of catalyst.4. A catalyst according to claim 1 , wherein the particle size of the nickel oxide nanoparticles or the alumina nanoparticles is less than about 0.1 μm.5. A catalyst according to claim 4 , wherein the particle size of the nickel oxide nanoparticles and the alumina nanoparticles are each less than about 0.1 μm.6. A catalyst according to claim 1 , wherein the alumina nanoparticles are present in an amount of at least 99% by weight of catalyst.7. A catalyst according to claim 1 , further comprising nanoparticles of at least one Group VIIIB metal oxide supported on the alumina nanoparticles; the Group VIIIB metal is other than nickel; and', 'the alumina nanoparticle to Group VIIIB metal oxide nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500., 'wherein8. A catalyst according to claim 1 , further comprising nanoparticles of at least one Group IB metal supported on the alumina nanoparticles; 'the alumina nanoparticle to Group IB metal nanoparticle weight to weight ratio in the catalyst is in a range of from about 80 to about 500.', 'wherein10. A process according to claim ...

Подробнее
30-01-2014 дата публикации

CO2 REFORMING CATALYST, METHOD OF PREPARING THE SAME, AND METHOD OF REFORMING CO2

Номер: US20140031200A1
Автор: Lee Seung Jae, Son In Hyuk
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A COreforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle. 1. A COreforming catalyst comprising:a porous carrier including a framework and protruding portions defining a plurality of pores therein; andat least one catalyst metal particle within the plurality of pores of the porous carrier, the at least one catalyst metal particle including a transition metal, the at least one catalyst metal particle being chemically bound to the porous carrier, the at least one catalyst metal particle having a deformed surface that conforms to a receiving surface of the porous carrier.2. The COreforming catalyst of claim 1 , wherein the transition metal is selected from a Group 6-12 element.3. The COreforming catalyst of claim 2 , wherein the Group 6-12 element is selected from at least one of Ni claim 2 , Co claim 2 , Cr claim 2 , Mn claim 2 , Mo claim 2 , Ag claim 2 , Cu claim 2 , Zn claim 2 , and Pd.4. The COreforming catalyst of claim 1 , wherein the porous carrier is an oxide.5. The COreforming catalyst of claim 4 , wherein the oxide is selected from at least one of alumina claim 4 , titanic claim 4 , ceria claim 4 , and silica oxide.6. The COreforming catalyst of claim 1 , wherein a majority of the at least one catalyst metal particle is Ni.7. The COreforming catalyst of claim 6 , wherein the Ni is present at a volume ratio of about 0.4% to about 7.5% based on a total volume of the COreforming catalyst.8. The COreforming catalyst of claim 6 , wherein the at least one catalyst metal particle has a hexagonal shape.9. The COreforming catalyst of claim 1 , wherein the COreforming catalyst is configured to facilitate a COreforming ...

Подробнее
06-02-2014 дата публикации

METHODS FOR PREPARING AND USING METAL AND/OR METAL OXIDE POROUS MATERIALS

Номер: US20140038816A1

Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others. 1. A bicontinuous porous body , comprising: a plurality of macropores defined by a wall , the macropores having a diameter of from greater than about 0.1 μm , wherein the macropores interconnect , forming a continuous network of pores that spans the body , permitting the flow of liquid or gas into and through the body , and wherein the wall of the macropores comprise a continuous layer of metal and/or metal oxide.2. The body of claim 1 , wherein the macropores have a diameter of from about 0.5 μm to about 30 μm.3. The body of claim 1 , wherein the walls of the macropores are not porous.4. The body of claim 1 , wherein the walls of the macropores have a plurality of mesopores having a diameter of from about 2 nm to about 50 nm thereby resulting in a bicontinuous porous material with hierarchical pores.5. The body of claim 1 , wherein the walls of the macropores have a plurality of micropores having a diameter of from less than about 2 nm thereby resulting in a bicontinuous porous material with hierarchical pores.6. The body of claim 1 , wherein the body is a hollow body.7. The body of claim 1 , wherein the body comprises one or more metals claim 1 , metal oxides claim 1 , or a combination thereof claim 1 , wherein the metals are selected from the group consisting of Li claim 1 , Be claim 1 , Na claim 1 , Mg claim 1 , Al claim 1 , K claim ...

Подробнее
13-02-2014 дата публикации

METHOD FOR MANUFACTURING METALLIC GLASS NANOWIRE, METALLIC GLASS NANOWIRE MANUFACTURED THEREBY, AND CATALYST CONTAINING METALLIC GLASS NANOWIRE

Номер: US20140045680A1
Принадлежит: TOHOKU UNIVERSITY

Provided is a method for easily manufacturing large volumes of a metallic glass nanowire with an extremely small diameter. This metallic glass nanowire manufacturing method is characterized in that a melted metallic glass or a master alloy thereof is gas-atomized in a supercooled state. 1. A method for manufacturing metallic glass nanowire , characterized in that melted metallic glass or a master alloy thereof is subjected to gas atomization in a supercooled state.2. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said metallic glass is one selected from the group consisting of a Zr-based claim 1 , a Fe-based claim 1 , a Pd-based claim 1 , a Pt-based claim 1 , and a Ni-based type.3. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said gas atomization is carried out at gas pressure of 10 kgf/cmor above.4. The metallic glass nanowire manufacturing method according to claim 1 , characterized in that said metallic glass nanowires are in a fibrous state of an entanglement of a plurality of the metallic glass nanowires.5. The metallic glass nanowire manufacturing method according to claim 4 , characterized in that said gas atomization is carried out at gas pressure of 70 kgf/cmor above.6. A metallic glass nanowire manufactured by the manufacturing method according to .7. Metallic glass nanowires in a fibrous state of an entanglement of a plurality of the metallic glass nanowires claim 4 , manufactured by the manufacturing method according to .8. A catalyst containing metallic glass nanowires in a fibrous state of an entanglement of a plurality of the metallic glass nanowires according to .9. The metallic glass nanowire manufacturing method according to claim 2 , characterized in that said gas atomization is carried out at gas pressure of 10 kgf/cmor above.10. The metallic glass nanowire manufacturing method according to claim 2 , characterized in that said metallic glass nanowires ...

Подробнее
13-02-2014 дата публикации

CATALYSTS

Номер: US20140045952A1
Принадлежит:

A process for preparing a catalyst precursor includes forming a slurry of particles of an insoluble metal compound, where the metal of the insoluble metal compound is an active catalyst component, with particles and/or one or more bodies of a pre-shaped catalyst support in a carrier liquid. The particles of the insoluble metal compound are thus contacted with the particles and/or the one or more bodies of the pre-shaped catalyst support. A treated catalyst support is thereby produced. Carrier liquid is removed from the slurry to obtain a dried treated catalyst support, which either directly constitutes the catalyst precursor, or is optionally calcined to obtain the catalyst precursor. 1. A process for preparing a catalyst precursor , which process includesforming a slurry of particles of an insoluble inorganic metal salt, particles and/or one or more bodies of a pre-shaped catalyst support in a carrier liquid, and a soluble metal salt dissolved in the carrier liquid, wherein the metals of the insoluble inorganic metal salt and the soluble metal salt are the same, and where the said metal is an active catalyst component, with the particles of the insoluble inorganic metal salt thus being contacted with the particles and/or the one or more bodies of the pre-shaped catalyst support and with the pre-shaped catalyst support thus being contacted at least once with the soluble metal salt, thereby to produce a treated catalyst support; andremoving carrier liquid from the slurry to obtain a dried treated catalyst support, which either directly constitutes the catalyst precursor, or is optionally calcined to obtain the catalyst precursor.2. A process according to claim 1 , wherein the contacting of the particles of the insoluble inorganic metal salt with the particles and/or the one or more bodies of the pre-shaped catalyst support is carried out for at least one minute.3. A process according to claim 1 , wherein the pre-shaped catalyst support is porous claim 1 , and is ...

Подробнее
27-02-2014 дата публикации

PROCESS FOR TREATING SHAPED CATALYST BODIES AND SHAPED CATALYST BODIES HAVING INCREASED MECHANICAL STRENGTH

Номер: US20140058134A1
Принадлежит: BASF SE

The present invention provides a process for treating shaped catalyst bodies which has the following steps: 116-. (canceled)17. A process for treating shaped catalyst bodies , which comprises the process steps:a) providing finished shaped catalyst bodies,b) impregnating the finished shaped catalyst bodies with a peptizing auxiliary in an amount of liquid which does not exceed the theoretical water absorption of the shaped catalyst bodies,c) thermal treating the impregnated shaped catalyst bodies at from 50° C. to 250° C. andd) calcinating the thermally treated shaped catalyst bodies at from 250° C. to 600° C.18. The process according to claim 17 , wherein an ammonia solution or a nitric acid solution is used as peptizing auxiliary.19. The process according to claim 18 , wherein an aqueous ammonia solution or an aqueous nitric acid solution is used as peptizing auxiliary.20. The process according to claim 17 , which claim 17 , after process step b) claim 17 , further comprises the process stepbb) allowing the peptizing auxiliary to act for up to 10 hours.21. The process according to claim 17 , wherein the thermal treatment in process step c) is carried out under atmospheric pressure or under reduced pressure or in a static or agitated bed of the shaped catalyst bodies.22. The process according to claim 21 , wherein the reduced pressure is from 0.1 to 0.9 bar.23. The process according to claim 17 , wherein the calcination in process step d) is carried out in a static or agitated bed of the shaped catalyst bodies.24. The process according to claim 17 , wherein extrudates or pellets or granules are used as shaped catalyst bodies.25. The process according to claim 17 , wherein heterogeneous catalysts are used as catalyst for the shaped catalyst bodies.26. The process according to claim 17 , wherein the catalyst is zeolite claim 17 , NiO/CoO/CuO/ZrO claim 17 , TiO claim 17 , CuO/AlOor CoO/SiO.27. The process according to claim 26 , wherein the zeolite is a boron-beta- ...

Подробнее
20-03-2014 дата публикации

IMPLANTATION OF NI NANO DOMAINS IN REFRACTORY METAL OXIDE SUPPORT BY MEANS OF SOL-GEL ENCAPSULATION - AN EFFECTIVE SOLUTION TO COKE FORMATION IN THE PARTIAL OXIDATION OF NATURAL GAS

Номер: US20140077134A1
Автор: Hong Liang, YIN Xiong
Принадлежит: NATIONAL UNIVERSITY OF SINGAPORE

A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C-Chydrocarbon. 2. The catalyst of claim 1 , wherein the catalytic sites are nano-nickel(0) domains.3. The catalyst of claim 2 , wherein the metal oxide is AlO claim 2 , SiO claim 2 , CaO claim 2 , or ZrO.4. The catalyst of claim 3 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.5. The catalyst of claim 1 , wherein the catalytic sites are nano-nickel(0)-A(0) alloy domains.6. The catalyst of claim 5 , wherein A is Rh.7. The catalyst of claim 5 , wherein the metal oxide is AlO claim 5 , SiO claim 5 , CaO claim 5 , or ZrO.8. The catalyst of claim 7 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.9. The catalyst of claim 8 , wherein A is Rh.1016-. (canceled)18. The catalyst of claim 17 , wherein in the producing step only (NiO)(OH)particles are produced so as to form a metal oxide-supported nano-nickel(0) domains catalyst.19. The catalyst of claim 18 , wherein the metal oxide is AlO claim 18 , SiO claim 18 , CaO claim 18 , or ZrO.20. The catalyst of claim 19 , wherein the catalytic sites constitute 18-22 wt % of the catalyst.21. The catalyst of claim 17 , wherein in the producing step both (NiO)(OH)particles and another metal-containing particles are produced so as to form a metal oxide-supported nano-nickel(0)-A(0) alloy domains catalyst is formed.22. The catalyst of claim 21 , wherein A is Rh.23. The catalyst of claim 21 , wherein the metal oxide is AlO claim 21 , SiO claim 21 , CaO claim 21 , or ZrO.24. The catalyst of claim 23 , wherein the catalytic sites constitute ...

Подробнее
02-01-2020 дата публикации

PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE WITH STIRRED GAS/LIQUID REACTOR AND PLUG-FLOW REACTOR SEQUENCE

Номер: US20200001266A1
Принадлежит: IFP ENERGIES NOUVELLES

Reaction device which makes possible the oligomerization of olefins to give linear olefins and preferably linear α-olefins, comprising a gas/liquid reactor and a reactor of plug-flow type. The reaction device is also employed in an oligomerization process. 1. Device comprising:{'b': '1', 'a gas/liquid reactor (), of elongated shape along the vertical axis, comprising a liquid phase and a gas phase located above the said liquid phase,'}{'b': '3', 'a means for introduction of the olefin () into the gas/liquid reactor employing a means for injection of the olefin within the said liquid phase of the gas/liquid reactor,'}{'b': '14', 'a means for introduction of the catalytic system () into the gas/liquid reactor,'}{'b': 13', '1, 'a recirculation loop () comprising withdrawal means in the gas/liquid reactor for the withdrawal and the dispatch of a fraction of withdrawn liquid to a heat exchanger capable of cooling the said liquid fraction, and means for introduction of the said cooled liquid, exiting from the heat exchanger, into the upper part of the gas/liquid reactor (),'}{'b': '11', 'a reactor of plug-flow type () comprising withdrawal means in the gas/liquid reactor for the withdrawal and the dispatch of a fraction of withdrawn liquid to the reactor of plug-flow type and means for recovery of a reaction effluent, at the outlet of the reactor of plug-flow type.'}2. Device according to claim 1 , in which the reactor of plug-flow type is located outside the gas/liquid reactor.3. Device according to claim 1 , in which the reactor of plug-flow type comprises a heat exchanger.4. Olefin oligomerization process employing the device according to claim 1 , at a pressure between 1.0 and 10.0 MPa and at a temperature between 0° C. and 200° C. claim 1 , comprising the following stages:{'b': '1', 'a) a catalytic oligomerization system comprising at least one metal precursor and at least one activating agent is introduced into a gas/liquid reactor () comprising a liquid phase and a ...

Подробнее
05-01-2017 дата публикации

SYNTHESIS OF OXYGEN-MOBILITY ENHANCED CEO2 AND USE THEREOF

Номер: US20170001176A1
Принадлежит:

Disclosed are catalysts capable of catalyzing the dry reforming of methane. The catalysts have a core-shell structure with the shell surrounding the core. The shell has a redox-metal oxide phase that includes a metal dopant incorporated into the lattice framework of the redox-metal oxide phase. An active metal(s) is deposited on the surface of the shell. 1. A catalyst capable of catalyzing a dry reformation of methane reaction , the catalyst comprising a core-shell structure having:a metal oxide core, a clay core, or a zeolite core;a shell surrounding the core, wherein the shell has a redox-metal oxide phase that includes a metal dopant incorporated into the lattice framework of the redox-metal oxide phase; andan active metal deposited on the surface of the shell.2. The catalyst of claim 1 , wherein the redox-metal oxide phase is cerium oxide (CeO) and the metal dopant is niobium (Nb) claim 1 , indium (In) claim 1 , or lanthanum (La) claim 1 , or any combination thereof.3. The catalyst of claim 2 , wherein the metal oxide core is an alkaline earth metal aluminate core selected from aluminate claim 2 , magnesium aluminate claim 2 , calcium aluminate claim 2 , strontium aluminate claim 2 , barium aluminate claim 2 , or any combination thereof.4. The catalyst of claim 3 , wherein the alkaline earth metal aluminate core is magnesium aluminate.5. The catalyst of claim 4 , comprising:65 wt. % to 85 wt. % magnesium aluminate;10 wt. % to 20 wt. % cerium oxide; and5 wt. % to 10 wt. % nickel.6. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of niobium incorporated into the lattice framework of the cerium oxide phase.7. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of indium incorporated into the lattice framework of the cerium oxide phase.8. The catalyst of claim 5 , comprising 0.5 wt. % to 2 wt. % of lanthanum incorporated into the lattice framework of the cerium oxide phase.9. The catalyst of claim 2 , wherein the metal oxide core is AlO.10. The ...

Подробнее
04-01-2018 дата публикации

STEAM REFORMING CATALYST AND METHOD OF MAKING THEREOF

Номер: US20180001309A1
Принадлежит:

The invention provides a method for the production of a supported nickel catalyst, in which an aqueous mixture comprising an alkali metal salt plus other metal salts is sintered to form a support material. A supported nickel catalyst comprising potassium β-alumina is also provided. 1. A supported nickel catalyst precursor obtained via a method comprising the steps of: i. magnesium mineral or magnesium salt,', 'ii. optionally, a calcium mineral or calcium salt,', 'iii. an aluminium mineral or aluminium salt,', 'iv. an alkali metal salt comprising at least one of Na and K, and', 'v. optionally water;, 'a. providing a mixture comprisingb. extruding said mixture to form an extrudate, said extrudate containing integrated reservoirs of said alkali metal salt, and calcining the extrudate at a temperature from 300-600° C.;c. sintering said calcined extrudate at a temperature in a range of 1100-1400° C. to form a support material;d. impregnating said support material with an aqueous solution comprising a nickel salt to provide the supported nickel catalyst precursor; ande. optionally repeating step d.2. A supported nickel catalyst obtainable via the method recited in claim 1 , wherein claim 1 , after each impregnation step d claim 1 , the supported nickel catalyst precursor is decomposed to form a supported nickel catalyst claim 1 , suitably at temperatures between 350-500° C.3. A supported nickel catalyst comprising nickel supported on a support material claim 1 , characterised in that said support material comprises potassium β-alumina or sodium β-alumina claim 1 , or mixtures thereof.4. The supported nickel catalyst according to claim 3 , wherein said support material comprises 8 wt % or more potassium β-alumina claim 3 , as measured by XRD.5. The supported nickel catalyst according to claim 3 , comprising 0.2-2 wt % potassium.6. Use of a supported nickel catalyst according to as a catalyst in a steam reforming process.7. A steam reforming process comprising the steps of: ...

Подробнее
05-01-2017 дата публикации

METHANE STEAM REFORMING, USING NICKEL/ALUMINA NANOCOMPOSITE CATALYST OR NICKEL/SILICA-ALUMINA HYBRID NANOCOMPOSITE CATALYST

Номер: US20170001863A1
Принадлежит: KOREA INSTITUTE OF ENERGY RESEARCH

The present invention relates to a method of methane steam reforming using a nickel/alumina nanocomposite catalyst. More specifically, the present invention relates to a method of carrying out methane steam reforming using a nickel/alumina nanocomposite catalyst wherein nickel metal nanoparticles are uniformly loaded in a high amount on a support via a melt infiltration method with an excellent methane conversion even under a relatively severe reaction condition of a high gas hourly space velocity or low steam supply, and to a catalyst for this method. In addition, the present invention prepares a nickel/silica-alumina hybrid nanocatalyst by mixing the catalyst prepared by the melt infiltration method as the first catalyst and the nickel silica yolk-shell catalyst as the second catalyst, and applies it to the steam reforming of methane to provide a still more excellent catalytic activity even under the higher temperature of ° C. or more with the excellent methane conversion. 150. A method of methane steam reforming with a methane conversion of % or more , which comprisesi) a step of providing a first catalyst for methane steam reforming which is prepared by a first step of grinding and mixing a porous alumina support and a nickel-containing compound having a melting point lower than the porous alumina support, and melt-infiltrating the nickel-containing compound into pores of the surface, inside, or both of the porous alumina support in a closed system at a temperature ranging from the melting point of the nickel-containing compound to ±5° C. higher than the melting point; and a second step of thermally treating the melt-infiltrated composite powder at 400 to 600° C. under reducing gas atmosphere to load nickel particles having the average particle size of 10 nm or less in the porous alumina support; ora nickel silica-alumina hybrid catalyst comprising the first catalyst; and a yolk-shell shaped second catalyst for methane steam reforming which has a nano- or micro- ...

Подробнее
04-01-2018 дата публикации

REDUCTION OF GREENHOUSE GAS EMISSION

Номер: US20180002262A1
Принадлежит:

Herein disclosed is a method of reducing greenhouse gas (GHG) emission comprising introducing one or more feed streams into a reformer to generate synthesis gas; and converting synthesis gas to dimethyl ether (DME). In some cases, the reformer is a fluidized bed dry reforming reactor. In some cases, the reformer comprises a hydrogen membrane. In some cases, the hydrogen membrane removes hydrogen contained in the synthesis gas and shifts reforming reactions toward completion. 1. A method of reducing greenhouse gas (GHG) emission comprisingintroducing one or more feed streams into a reformer to generate synthesis gas; andconverting synthesis gas to dimethyl ether (DME).2. The method of wherein said reformer is a fluidized bed dry reforming reactor.3. The method of wherein the reformer comprises a hydrogen membrane or a hydrogen membrane coated with an erosion resistant layer.4. The method of wherein said hydrogen membrane removes hydrogen contained in the synthesis gas and shifts reforming reactions toward completion.5. The method of wherein reformed gas exits the top of the reformer and is separated from spent catalyst.6. The method of wherein spent catalyst is routed to a regenerator in which the catalyst is regenerated.7. The method of wherein a renewable fuel is used in the regenerator.8. The method of wherein the renewable fuel comprises landfill gas claim 7 , bio-digester gas claim 7 , pyrolysis oils and liquid fuels claim 7 , spent glycerol claim 7 , biomass derived syngas claim 7 , bio-ethanol.9. The method of wherein the regenerator comprises an air pre-heater and the method utilizes full or partial displacement of natural gas or natural gas derived syngas with a bio-genic gaseous or liquid fuel in the air pre-heater.10. The method of comprising using full or partial displacement of natural gas or natural gas derived syngas with a bio-genic gaseous or liquid fuel in the regenerator.11. The method of wherein the renewable fuel used in the regenerator comprises ...

Подробнее
04-01-2018 дата публикации

FLUIDIZED BED MEMBRANE REACTOR

Номер: US20180002263A1
Принадлежит:

Herein disclosed is a dry reforming reactor comprising a gas inlet near the bottom of the reactor; a gas outlet near the top of the reactor; a fluidized bed comprising a catalyst; and one or more hydrogen membranes comprising palladium (Pd). In some cases, the one or more hydrogen membranes comprises Pd alloy membranes, or Pd supported on ceramics or metals. In some cases, the one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor. In some cases, the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system. 1. A dry reforming reactor comprisinga gas inlet near the bottom of the reactor;a gas outlet near the top of the reactor;a fluidized bed comprising a catalyst; andone or more hydrogen membranes comprising palladium (Pd).2. The reactor of wherein said one or more hydrogen membranes comprises Pd alloy membranes claim 1 , or Pd alloys supported on ceramic or metal substrates.3. The reactor of wherein said one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor.4. The reactor of wherein the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system.5. The reactor of wherein the gas inlet is configured to allow one or more feed streams to enter the reactor via a manifold or distributor.6. The reactor of wherein the catalyst comprises nickel and alumina.7. The reactor of wherein the reactor is configured to allow reformed gas to exit the top of the reactor and separate from spent catalyst.8. The reactor of wherein no steam or oxygen injection is needed.9. The reactor of is operated at a temperature range of 600-700° C. and a pressure range of 700-800 kPa.10. A method of producing dimethyl ether (DME) ...

Подробнее
04-01-2018 дата публикации

FLUIDIZED BED MEMBRANE REACTOR

Номер: US20180002264A1
Принадлежит:

Herein disclosed is a dry reforming reactor comprising a gas inlet near the bottom of the reactor; a gas outlet near the top of the reactor; a fluidized bed comprising a catalyst; and one or more hydrogen membranes comprising palladium (Pd). In some cases, the one or more hydrogen membranes comprises Pd alloy membranes, or Pd supported on ceramics or metals. In some cases, the one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor. In some cases, the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system. 1. A dry reforming reactor comprisinga gas inlet near the bottom of the reactor;a gas outlet near the top of the reactor;a fluidized bed comprising a catalyst; andone or more hydrogen membranes comprising palladium (Pd).2. The reactor of wherein said one or more hydrogen membranes comprises Pd alloy membranes claim 1 , or Pd alloys supported on ceramic or metal substrates.3. The reactor of wherein said one or more hydrogen membranes are placed vertically in the reactor as hydrogen membrane tubes hanging from the top of the reactor.4. The reactor of wherein the hydrogen membranes are configured to selectively collect hydrogen from the tubes via one or more internal manifolds and sent to an external hydrogen collection system.5. The reactor of wherein the gas inlet is configured to allow one or more feed streams to enter the reactor via a manifold or distributor.6. The reactor of wherein the catalyst comprises nickel and alumina.7. The reactor of wherein the reactor is configured to allow reformed gas to exit the top of the reactor and separate from spent catalyst.8. The reactor of configured to use no process water and no oxygen.9. The reactor of is operated at a temperature range of 600-700° C. and a pressure range of 700-800 kPa.10. The reactor of comprising one or more internal ...

Подробнее
20-01-2022 дата публикации

CARBON NANOTUBE COMPOSITE CATALYTIC FILM AND METHOD FOR MAKING THE SAME

Номер: US20220017368A1
Принадлежит:

A method for making a carbon nanotube composite catalytic film includes providing a carbon nanotube film and providing a precursor solution including iron nitrate, nickel chloride, and molybdenum pentachloride. The precursor solution is placed on the carbon nanotube film, to obtain a precursor film. The precursor film defines multiple through holes spaced apart from each other. The precursor film with the multiple through holes is annealed and a sulfur power is applied during annealing the precursor film with the multiple through holes. 1. A method for making a carbon nanotube composite catalytic film , comprising:providing a carbon nanotube film;providing a precursor solution comprising iron nitrate, nickel chloride, and molybdenum pentachloride;placing the precursor solution on the carbon nanotube film and drying, to obtain a precursor film;making the precursor film define a plurality of through holes spaced apart from each other; andannealing the precursor film with the plurality of through holes, and applying a sulfur power during annealing the precursor film with the plurality of through holes.2. The method of claim 1 , wherein the precursor solution consists of the iron nitrate claim 1 , the nickel chloride claim 1 , the molybdenum pentachloride claim 1 , and the solvent.3. The method of claim 1 , wherein making the precursor film define a plurality of through holes comprises drilling the precursor film by a laser.4. The method of claim 1 , wherein annealing the precursor film with the plurality of through holes is performed in a protective gas.5. The method of claim 4 , wherein the protective gas is a mixture of 90% Ar and 10% H.6. The method of claim 1 , wherein annealing the precursor film with the plurality of through holes is performed in a mixture of 90% Ar and 10% Hat 400° C. for 30 minutes.7. The method of claim 1 , wherein a method for making the carbon nanotube film comprising:providing carbon nanotubes;adding the carbon nanotubes into a solvent and ...

Подробнее
09-01-2020 дата публикации

NI-AL2O3@AL2O3-SIO2 CATALYST WITH COATED STRUCTURE, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

Номер: US20200009538A1
Принадлежит:

A Ni—AlO@AlO—SiOcatalyst with coated structure is provided. The catalyst has a specific surface area of 98 m/g to 245 m/g, and a pore volume of 0.25 cm/g to 1.1 cm/g. A mass ratio of an AlOcarrier to active component Ni in the catalyst is AlO:Ni=100:4˜26, a mass ratio of the AlOcarrier to an AlO—SiOcoating layer is AlO:AlO—SiO=100:0.1˜3, and a molar ratio of Al to Si in the AlO—SiOcoating layer is 0.01 to 1. Ni particles are distributed on a surface of the AlOcarrier in an amorphous or highly dispersed state and have a grain size less than or equal to 8 nm, and the coating layer is filled among the Ni particles. 1. A Ni—AlO@AlO—SiOcatalyst with coated structure , comprising: Ni particles are distributed on a surface of an AlOcarrier in an amorphous or highly dispersed state as an active component for the catalyst and have a grain size less than or equal to 8 nm , a mass ratio of the AlOcarrier to an AlO—SiOcoating layer is AlO:AlO—SiO=100:0.1˜3 , a molar ratio of Al to Si in the AlO—SiOcoating layer is 0.01˜0.1:1 , and the coating layer is filled among the Ni particles.2. The Ni—AlO@AlO—SiOcatalyst with coated structure according to claim 1 , wherein the catalyst has a specific surface area of 98 m/g˜245 m/g claim 1 , and a pore volume of 0.25 cm/g˜1.1 cm/g claim 1 , and a mass ratio of the AlOcarrier to the active component Ni in the catalyst is AlO:Ni=100:4˜26.3. A preparation method of the Ni—AlO@AlO—SiOcatalyst with coated structure according to claim 1 , comprising the steps of:{'sub': 2', '3', '2', '3, 'impregnation step: loading the active component Ni onto the AlOcarrier using an impregnation method, Ni being distributed in tetrahedral and octahedral holes on an AlOsurface and growing into microcrystalline particles by using the tetrahedral and octahedral holes as nuclei;'}{'sub': 2', '3', '2', '2', '3', '2', '3', '2', '2', '3, 'deposition step: loading the AlO—SiOlayer in a depositing manner onto a surface of a Ni/AlOcatalyst obtained in the impregnation ...

Подробнее
14-01-2021 дата публикации

PARTIAL OXIDATION OF HYDROCARBONS

Номер: US20210009413A1
Автор: XU Bang-Cheng
Принадлежит:

A process of catalytic partial oxidation of hydrocarbons, particularly methane and/or natural gas to form a product containing hydrogen and carbon monoxide where the first catalyst comprises Co—Ni—Cr—W alloy. 1. A catalytic partial oxidation process comprising:passing a feed stream comprising a hydrocarbon feedstock and oxygen or an oxygen containing mixture through a reactor having at least a first reaction zone and a subsequent second reaction zone; andproducing an effluent stream comprising carbon monoxide and hydrogen, the first reaction zone comprises a first catalyst having a first surface area and a first thermal conductivity, the first catalyst comprising a Co—Ni—Cr—W alloy;', 'the second reaction zone comprises a second catalyst having a second surface area and a second thermal conductivity, the second catalyst comprising a second metal supported on a carrier;', 'the first surface area of the first catalyst is lower than the second surface area of the second catalyst; and', 'a pressure in said reactor is between about 600 kPa and about 7,500 kPa., 'wherein2. The catalytic partial oxidation process of claim 1 , wherein the Co—Ni—Cr—W alloy comprises 9.0-11.0 wt % Ni claim 1 , 19.0-21.0 wt % Cr claim 1 , 14.0-16.0 wt % W and balance Co.3. The catalytic partial oxidation process of claim 1 , wherein:{'sup': '2', 'the first thermal conductivity of the first catalyst is at least 0.05 cal/cm/cm/second/° C. at operating temperatures; and'}the first thermal conductivity of the first catalyst is higher than the second thermal conductivity of the second catalyst.4. The catalytic partial oxidation process of claim 1 , wherein the first thermal conductivity of the first catalyst is at least 0.10 cal/cm/cm/second/° C.5. The catalytic partial oxidation process of claim 1 , wherein the second metal is selected from the group consisting of iron claim 1 , cobalt claim 1 , nickel claim 1 , ruthenium claim 1 , rhodium claim 1 , palladium claim 1 , osmium claim 1 , iridium ...

Подробнее
03-02-2022 дата публикации

CATALYST FOR PREPARING SYNTHETIC GAS, METHOD FOR PREPARING THE SAME, AND METHOD FOR PREPARING SYNTHETIC GAS USING THE SAME

Номер: US20220032281A1
Принадлежит:

Disclosed are a catalyst for preparing a synthetic gas through dry reforming, a method preparing the catalyst, and a method using the catalyst for preparing the synthetic gas. The catalyst may include: a support including regularly distributed mesopores; metal nanoparticles supported on the support; and a metal oxide coating layer coated on a surface of the support. 1. A catalyst for preparing a synthetic gas through dry reforming , comprising:a support including regularly distributed mesopores;metal nanoparticles supported on the support; anda metal oxide coating layer coated on a surface of the support.2. The catalyst for preparing the synthetic gas of claim 1 , wherein the support comprises one or more selected from the group consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) claim 1 , polyethylene oxide (PEO) claim 1 , polypropylene oxide (PPO) claim 1 , SiO claim 1 , AlO claim 1 , MgO claim 1 , MgAlO claim 1 , LaO claim 1 , CeO claim 1 , ZrO claim 1 , SiC claim 1 , an indium tin oxide (ITO) claim 1 , and a fluorine doped tin oxide (FTO).3. The catalyst for preparing the synthetic gas of claim 1 , wherein the support comprises one or more selected from the group consisting of MCM-41 claim 1 , MCM-48 claim 1 , SBA-1 claim 1 , SBA-15 claim 1 , SBA-16 claim 1 , KIT-1 claim 1 , KIT-6 claim 1 , MSU-1 claim 1 , HMS claim 1 , AMS-8 claim 1 , AMS-10 claim 1 , FDU-1 claim 1 , FDU-2 claim 1 , and FDU-12.4. The catalyst for preparing the synthetic gas of claim 1 , wherein the metal nanoparticles comprises one or more selected from the group consisting of Ni claim 1 , Fe claim 1 , Cu claim 1 , Co claim 1 , Mo claim 1 , Ru claim 1 , Rh claim 1 , Pd claim 1 , Ag claim 1 , Cd claim 1 , Zn claim 1 , Au claim 1 , Pt claim 1 , Ir claim 1 , Os claim 1 , W claim 1 , and an oxide thereof.5. The catalyst for preparing the synthetic gas of claim 1 , wherein a diameter of the metal nanoparticles is about 10 nm or less.6. The catalyst for preparing the ...

Подробнее
03-02-2022 дата публикации

NAPHTHA CATALYTIC CRACKING CATALYST, CATALYTIC CRACKING METHOD AND REACTION DEVICE

Номер: US20220033713A1
Принадлежит:

A method for catalytic cracking of naphtha is provided. Naphtha is catalytically cracked under the action of a catalyst. The catalyst includes aluminosilicate, alkali metal oxide, alkaline earth metal oxide, TiO, iron oxide, vanadium oxide and nickel oxide. On the other hand, a rapid separation component is arranged in a disengager of a catalytic cracking reaction device, so that a transport disengaging height is greatly reduced without changing a gas flow and a diameter of the disengager. In addition, the separation efficiency of oil gas and the catalyst is improved. 1. A method for catalytic cracking of naphtha , comprising:{'b': '1', 'S: delivering a catalyst in a pre-lift pipe through a regenerator sloped pipe and to flow upward under the action of a pre-lift medium to enter a dense phase section of a reactor,'}feeding a feedstock containing naphtha into the reactor tangentially upward through a nozzle located at a bottom of the dense phase section of the reactor;feeding the feedstock, by the nozzle of the reactor, along a tangential direction of a circular cross-sectional of the dense phase section of the reactor at an angle of 10-90° to a vertical direction;{'b': '2', 'S: enabling oil gas and the catalyst from a riser pipe to enter a settler of a reaction device,'}enabling the oil gas from the disengager to enter a separation system, and enabling the catalyst to flow out through a conveying part of a cyclone to fall into a settler stripping section;{'b': '3', 'S: stripping the catalyst, enabling the catalyst stripped to enter a regenerator through a spent sloped pipe, and heating the catalyst in the regenerator; and'}{'b': '4', 'S: enabling the catalyst to enter a disengager section of the regenerator to fall into a stripping section of the disengager section of the regenerator and enter a degassing tank, and'}stripping the catalyst in the degassing tank and enabling the catalyst stripped to return to the reactor through the regenerator sloped pipe.2. The ...

Подробнее
15-01-2015 дата публикации

Metal Oxide Composite and a Method of Forming Thereof

Номер: US20150017084A1
Принадлежит:

A method of forming a metal oxide composite, the method comprising mixing a metal oxide, at least two monomers and a dispersant to produce a slurry; gel casting the slurry to produce a green metal oxide composite; and sintering the green metal oxide composite to produce the metal oxide composite. A metal oxide composite formed according to the method. Use of the metal oxide composite, for catalysing hydrolysis of metal borohydride to produce hydrogen. 1. A method of forming a metal oxide composite , the method comprising:mixing a metal oxide, at least two monomers and a dispersant to produce a slurry;gel casting the slurry to produce a green metal oxide composite; andsintering the green metal oxide composite to produce the metal oxide composite.2. The method according to claim 1 , further comprising degassing the slurry prior to gel casting the slurry.3. The method according to claim 1 , wherein the metal oxide comprises at least one of: a cobalt-based metal oxide claim 1 , a yttria stabilized zirconia-based metal oxide claim 1 , a nickel-based metal oxide claim 1 , and a perovskite-based metal oxide.4. The method according to claim 1 , wherein the at least two monomers comprises an acrylamide (AM) and an N claim 1 ,N′-methylenebisacrylamide (MBAM).5. The method according to claim 1 , further comprising adding at least one of a catalyst and an initiator to the slurry prior to the gel casting.6. The method according to claim 5 , wherein the initiator is an ammonium bisulphate (APS) solution.7. The method according to claim 5 , wherein the catalyst is N claim 5 ,N claim 5 ,N′ claim 5 ,N′-tetramethylethylenediamide (TEMED).8. (canceled)9. The method according to claim 1 , wherein the mixing further comprises adding a pore former in the mixing claim 1 , the pore former configured to form pores in the metal oxide composite.10. The method according to claim 9 , wherein the pore former comprises graphite powder.11. The method according to claim 1 , wherein the mixing ...

Подробнее
19-01-2017 дата публикации

Methods for producing butanol

Номер: US20170015610A1
Принадлежит: UNIVERSITY OF ROCHESTER

Methods and compositions for producing 1-butanol are described herein. In some examples, the methods can comprise, contacting a reactant comprising ethanol with a catalyst system, thereby producing a product comprising 1-butanol. The catalyst system can comprise, for example, an iridium catalyst and a nickel, copper, and/or zinc catalyst. The nickel, copper, and zinc catalysts can comprise nickel, copper, and/or zinc and a sterically bulky ligand.

Подробнее
16-01-2020 дата публикации

CATALYST-ADHERED BODY PRODUCTION METHOD AND CATALYST ADHESION DEVICE

Номер: US20200016586A1
Принадлежит:

A catalyst-adhered body production method comprising an adhesion process for arranging a mixed liquid comprising a catalyst raw material and/or a catalyst carrier raw material and target particles in a container having a porous plate and adhering a catalyst and/or a catalyst carrier to the surface of target particles to obtain adherence-treated particles, an excess solution removal process for removing via the porous plate, at least a portion of excess solution comprising excess components which did not adhere to the adherence-treated particles from the container, to form a filled layer of the adherence-treated particles on the porous plate, and a drying process for drying the filled layer in the container. 1. A catalyst-adhered body production method ,comprising an adhesion process for arranging a mixed liquid comprising a catalyst raw material and/or a catalyst carrier raw material and target particles in a container having a porous plate and adhering a catalyst and/or a catalyst carrier to the surface of the target particles to obtain adherence-treated particles, an excess solution removal process for removing via the porous plate, at least a portion of an excess solution comprising excess components which did not adhere to the adherence-treated particles from the container to form a filled layer of the adherence-treated particles on the porous plate, and a drying process for drying the filled layer in the container.2. The catalyst-adhered body production method according to claim 1 , wherein the adhesion process comprises a solution supply step for supplying a solution comprising the catalyst raw material and/or the catalyst carrier raw material to the target particles filled in the container to obtain the mixed liquid.3. The catalyst-adhered body production method according to comprising supplying a mixed solution comprising the catalyst raw material and the catalyst carrier raw material in the solution supply step.4. The catalyst-adhered body production method ...

Подробнее
21-01-2021 дата публикации

EXHAUST TREATMENT SYSTEM INCLUDING NICKEL-CONTAINING CATALYST

Номер: US20210016257A1
Принадлежит:

Methods and systems are provided for emissions control of a vehicle. In one example, a catalyst may include a cerium-based support material and a transition metal catalyst loaded on the support material, the transition metal catalyst including nickel and copper, wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material. In some examples, limiting nickel to the monatomic layer may mitigate extensive transition metal catalyst degradation ascribed to sintering of thicker nickel washcoat layers. Further, by utilizing the cerium-based support material, side reactions involving nickel in the transition metal catalyst with other support materials may be prevented. 1. A catalyst , comprising:a support material comprising one or more of cerium metal, ceria, and high-cerium cerium-zirconium oxide; anda transition metal catalyst loaded on the support material, the transition metal catalyst comprising nickel and copper;wherein nickel in the transition metal catalyst is included in a monatomic layer loaded on the support material.2. The catalyst of claim 1 , wherein a loading of nickel in the transition metal catalyst on the support material is greater than 0.001 g/mand less than 0.002 g/m.3. The catalyst of claim 1 , wherein nickel is present at about 12 wt. %.4. The catalyst of claim 1 , wherein a weight ratio of copper to nickel is about 1:49.5. The catalyst of claim 1 , wherein the high-cerium cerium-zirconium oxide is CeZrO.6. The catalyst of claim 1 , wherein alumina is present at a molar ratio of alumina to nickel of less than 0.20.7. The catalyst of claim 1 , wherein no alumina is present.8. A system for a vehicle claim 1 , comprising:a first emissions treatment device comprising a cerium-based support material and a transition metal catalyst washcoat, the transition metal catalyst washcoat comprising nickel and copper, with nickel in the transition metal catalyst washcoat included in only a monatomic layer loaded on ...

Подробнее
21-01-2021 дата публикации

HYDROPROCESSING OF HEAVY CRUDES BY CATALYSTS IN HOMOGENOUS PHASE

Номер: US20210017457A1
Принадлежит:

This disclosure relates to a procedure, which through the application of a catalyst in homogeneous phase, allows the transformation of heavy hydrocarbons (vacuum residue, atmospheric residue, heavy and extra-heavy crudes) into hydrocarbons of lower molecular weight, characterized because after its application, the hydrocarbons obtain greater API gravity, lower kinematic viscosity and different composition by hydrocarbon families (SARA) that increases the proportion of saturated and aromatic resins and asphalts. The sulphur and nitrogen content is also reduced, resulting in higher yields to high commercial value distillates and a lighter product as compared to the original crude. 1. A catalyst to transform heavy and extra-heavy crude oils into lighter oils , wherein organic metal salts that includes a metal from one of Groups VIIB , VIB or IB are used for preparation of the catalyst.2. A catalyst in accordance with claim 1 , wherein the metal in the metal salt is one of Fe claim 1 , Co claim 1 , Ni claim 1 , Cu claim 1 , Mo claim 1 , or W.3. A procedure for the preparation of a catalyst claim 1 , comprising:1) mixing a mineral acid and ammonium salts, and shaking the mixture at a temperature of 25° C. until a clear solution is obtained, with a pH variation between 1 and 2;2) incorporating Nickel salts into the clear solution and solubilize at 40-100° C., then dissolving in water, and maintaining agitation of the solution for a time of 3 h at a temperature of 25° C., resulting in a green and translucent solution;3) storing the green and translucent solution in a closed container under ambient conditions; and [{'sub': '2', 'wherein the catalyst has a final molar ratio of 1.0 Ni, 0.084 Mo, 0.295 H+, 14.42 HO, at pH 1 to 3;'}, 'and wherein the catalyst transforms heavy and extra-heavy crude oils into lighter oils., '4) dehydrating the catalyst at 90° C.,'}4. The procedure for the preparation of a catalyst claim 3 , in accordance with claim 3 , wherein during preparation ...

Подробнее
28-01-2016 дата публикации

One-Step Process for Hexafluoro-2-Butene

Номер: US20160023972A1
Принадлежит:

Disclosed is a one step process for making of 1,1,1,4,4,4-hexafluoro-2-butene. More specifically, the present invention provides a process for making hexafluoro-2-butene, continuously, from 2-chloro-3,3,3-trifluoropronene using FeO/NiO impregnated carbon catalyst at 600° to 650° C. 1. A process for making 1 ,1 ,1 ,4 ,4 ,4-hexafluoro-2-butene (HFO-1336) from 2-chloro-3 ,3 ,3-trifluoropropene (HCFC-1233xf) comprising reacting HCFC-1233xf with a selected catalyst , at a reactive temperature , to afford HFO-1336.2. The process of claim 1 , which is conducted in the vapor phase.3. The process of claim 2 , which is conducted in a continuous manner.4. The process of claim 2 , wherein the catalyst comprises FeO/NiO.5. The process of claim 4 , wherein the catalyst comprises a ratio of about 95-99 wt % FeOto about 5-1 wt % NiO.6. The process of claim 4 , wherein the catalyst comprises a ratio of about 98 wt % FeOto 2 wt % NiO.7. The process of claim 2 , wherein the catalyst is selected from the group consisting of RuO claim 2 , RuO claim 2 , and OsOin combination with oxides of Pd or Pt.8. The process of claim 2 , wherein the catalyst is impregnated on carbon.9. The process of claim 8 , wherein the carbon is activated carbon.10. The process of claim 9 , wherein the activated carbon is granular with a mesh size of 4-14.11. The process of claim 9 , wherein the activated carbon is pelletized.12. The process of claim 2 , wherein the reaction temperature ranges from 600° to 650° C.13. The process of claim 1 , wherein both the trans and cis isomers of HFO-1336 are formed.14. The process of claim 13 , wherein the predominant isomer of HFO-1336 formed is the trans isomer.15. The process of claim 14 , wherein the ratio of the trans isomer to the cis isomer of HFO-1336 is about 88:12.16. The process of claim 15 , wherein the trans isomer is converted into the cis isomer by reaction with an isomerization catalyst.17. The process of claim 16 , wherein the isomerization catalyst comprises ...

Подробнее
17-04-2014 дата публикации

METAL-SUPPORTED CATALYST STRUCTURES AND PROCESSES FOR MANUFACTURING THE SAME

Номер: US20140106962A1
Принадлежит: Alloys Surfaces Company, Inc.

The present invention relates to methods for producing metal-supported thin layer skeletal catalyst structures, to methods for producing catalyst support structures without separately applying an intermediate washcoat layer, and to novel catalyst compositions produced by these methods. Catalyst precursors may be interdiffused with the underlying metal support then activated to create catalytically active skeletal alloy surfaces. The resulting metal-anchored skeletal layers provide increased conversion per geometric area compared to conversions from other types of supported alloy catalysts of similar bulk compositions, and provide resistance to activity loss when used under severe on-stream conditions. Particular compositions of the metal-supported skeletal catalyst alloy structures can be used for conventional steam methane reforming to produce syngas from natural gas and steam, for hydrodeoxygenation of pyrolysis bio-oils, and for other metal-catalyzed reactions inter alia. 1. A method of producing a structured catalyst comprising:(a) preparing a slurry comprising one or more metal powders, including aluminum;(b) coating a metal substrate, or a mat of metal fiber or a woven metal fiber assembly, with said slurry;(c) subjecting the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly to heat under an inert or reducing atmosphere whereby at least one of the one or more metal powders melts and interdiffuses into the surface of the metal substrate, or metal fiber mat or woven metal fiber assembly;(d) leaching the coated metal substrate or coated metal fiber mat or coated woven metal fiber assembly obtained in step (c) in a caustic solution;(e) bathing the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly obtained in step (d) in a chelating acid solution;(f) passivating the coated metal substrate, coated metal fiber mat or coated woven metal fiber assembly obtained in step (e); and(g) optionally abrading ...

Подробнее
10-02-2022 дата публикации

Reactor for the Conversion of Carbon Dioxide

Номер: US20220040664A1
Принадлежит:

The present invention concerns a reactor for the conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol comprising a support made from an electrically and thermally conductive material, forming the wall or walls of at least one longitudinal channel that passes through the support and also acting as the cathode of the reactor, at least one wire electrode forming an anode of the reactor, and extending within each longitudinal channel, and being arranged at a distance from the wall or walls of the longitudinal channel, each wire electrode optionally being covered with an electrically insulating layer along the part of the wire electrode extending within the longitudinal channel, a catalyst capable of catalysing a conversion reaction for the conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol, the catalyst being situated between the wire electrode and the wall or walls of each longitudinal channel. 11. A reactor () for conversion of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol , comprising:{'b': 2', '2', '3', '2', '1, 'a support () made of electrically and thermally conductive material, said support () forming the wall or walls of at least one longitudinal channel () which passes through the support () and also acts as cathode of the reactor ()'}{'b': 4', '1', '4', '3', '3', '3', '4', '5', '4', '3, 'at least one wire electrode () forming an anode of the reactor (), each wire electrode () extending within each longitudinal channel (), along said longitudinal channel (), and being arranged at a distance from the wall or walls of said longitudinal channel (), each wire electrode () being optionally covered by an electrically insulating layer () along the part of the wire electrode () extending within said longitudinal channel (),'}{'b': 6', '6', '4', '3, 'a catalyst () adapted to catalyse a conversion reaction of carbon dioxide or carbon monoxide into hydrocarbon and/or alcohol, the catalyst () being ...

Подробнее
04-02-2016 дата публикации

MONOLITH CATALYST FOR CARBON DIOXIDE REFORMING REACTION, PREPARATION METHOD FOR SAME, AND PREPARATION METHOD FOR SYNTHESIS GAS USING SAME

Номер: US20160030927A1
Принадлежит:

The present invention relates to a monolith catalyst for a carbon dioxide reforming reaction and to a preparation method for same, and more specifically the invention provides a preparation method for a monolith catalyst for a methane reforming reaction using carbon dioxide, the method comprising a step of mixing and impregnating a support in a metal precursor solution, coating a monolith substrate with the solution resulting from the mixing and impregnating, drying same and then calcining the monolith substrate coated with the solution resulting from the mixing and impregnating. 1. A monolith catalyst for a carbon dioxide reforming reaction comprising a support impregnating an active material represented by the following Formula 1 and a monolith substrate:{'br': None, 'i': a', 'b, '(X)-(Zr)/Z\u2003\u2003[Formula 1]'}{'sub': 2', '2', '3, 'where X is an active material of Co or Ni, Z is a support of SiOor AlO, a and b each represents parts per weight of X and Zr relative to component Z in order, and a is 5.0 to 30.0, and b is 1.0 to 30.0 relative to 100 parts by weight of the support (Z).'}2. The monolith catalyst for a carbon dioxide reforming reaction as set forth in claim 1 , wherein the shape of the monolith substrate is a honeycomb structure.3. A preparation method for a monolith catalyst for a carbon dioxide reforming reaction comprising a support impregnating an active material represented by the following Formula 1 and a monolith substrate claim 1 , the method comprising the steps of:mixing and impregnating a metal precursor solution with a support Z of the following Formula 1 so as to meet the component ratio of the following Formula 1 (step 1);coating a monolith substrate with the mixed and impregnated solution in step 1 (step 2);drying the monolith substrate coated with the mixed and impregnated solution in step 2 (step 3); and {'br': None, 'i': a', 'b, '(X)-(Zr)/Z\u2003\u2003[Formula 1]'}, 'calcining the dried monolith substrate after being coated with ...

Подробнее
04-02-2016 дата публикации

CARBON OXIDE REDUCTION WITH INTERMETALLIC AND CARBIDE CATALYSTS

Номер: US20160031710A1
Принадлежит: Seerstone LLC

A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of an intermetallic or carbide catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies, the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing an intermetallic or carbide catalyst in a reactor includes placing the catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor. 1. A method of reducing a carbon oxide to a lower oxidation state , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under predetermined conditions of temperature and pressure adapted to produce water and a solid carbon product;wherein the catalyst comprises an intermetallic compound.2. The method of claim 1 , wherein the catalyst comprises NiFe.3. The method of claim 1 , wherein the catalyst comprises FePt.4. The method of claim 1 , wherein the catalyst comprises at least two different metals.5. A method of reducing a carbon oxide to a lower oxidation state claim 1 , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under predetermined conditions of temperature and pressure adapted to produce water and a solid carbon product;wherein the catalyst comprises a metal carbide.6. The method of claim 5 , wherein the catalyst comprises cementite (FeC).7. A method of reducing a carbon oxide to a lower oxidation state claim 5 , the method comprising:reacting a carbon oxide with a gaseous reducing agent in the presence of a catalyst under ...

Подробнее
04-02-2021 дата публикации

METHOD FOR THE HYDROGENATION OF AROMATICS USING A NICKEL-BASED CATALYST

Номер: US20210031179A1
Принадлежит: IFP ENERGIES NOUVELLES

Hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point below or equal to 650° C., at a temperature of between 30 and 350° C., at a pressure of between 0.1 and 20 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly space velocity HSV of between 0.05 and 50 h, in the presence of a catalyst comprising an alumina support and an active phase comprising nickel, prepared by 1. A process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point below or equal to 650° C. , said process being carried out in the gas phase or in the liquid phase , at a temperature of between 30 and 350° C. , at a pressure of between 0.1 and 20 MPa , at a hydrogen/(aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly space velocity HSV of between 0.05 and 50 h , in the presence of a catalyst comprising an alumina support and an active phase comprising nickel , said active phase not comprising a metal from Group VIB , said catalyst being prepared by a process comprising at least:i) a step of bringing said support into contact with at least one solution containing at least one nickel precursor,ii) a step of bringing said support into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function; 'steps i) and ii) being carried out separately, in any order, or at the same time.', 'iii) a step of drying said impregnated support at a temperature below 250° C.;'}2. The process as claimed in claim 1 , characterized in that it further comprises a step iv) of calcining said dried catalyst obtained in step iii) at a temperature of between 250 and 1000° C.3. The process as claimed in claim 1 , characterized ...

Подробнее
30-01-2020 дата публикации

PROCESS FOR OLIGOMERIZATION OF BUTENE WITH DETERMINATION OF THE PROPORTION OF ACIDIC CATALYSIS

Номер: US20200031732A1
Принадлежит: EVONIK DEGUSSA GmbH

The invention provides a process for oligomerization of n-butenes using a nickel-containing aluminosilicate catalyst to produce a product mixture whose ratio of 4,4-dimethylhexene to 3,4-dimethylhexene is determined and monitored. The invention further relates to a process for determining the ratio of the amount of the formed 4,4-dimethylhexene or of the formed 3-ethyl-2-methylpentene to the amount of the formed 3,4-dimethylhexene. 1. A process for oligomerization of n-butenes using a mesoporous , nickel-containing aluminosilicate catalyst over which a reactant stream containing the n-butenes is passed to form a product mixture , wherein the ratio of the amount of the formed 4 ,4-dimethylhexene to the amount of the formed 3 ,4-dimethylhexene in the product mixture is monitored and the catalyst is replaced upon exceedance of a threshold value for the ratio (amount of 4 ,4-dimethylhexene/amount of 3 ,4-dimethylhexene) ,wherein the threshold value for the ratio (amount of 4,4-dimethylhexene/amount of 3,4-dimethylhexene) is not more than 0.05.2. The process according to claim 1 , wherein the process for oligomerization is performed at a temperature in the range from 50° C. to 200° C.3. The process according to claim 1 , wherein the process for oligomerization is performed at a pressure in the range from 10 bar to 70 bar.4. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst employed in the process for oligomerization contains nickel claim 1 , calculated as nickel oxide NiO claim 1 , in an amount of 0.1% to 51% by weight based on the total composition of the mesoporous nickel-containing aluminosilicate catalyst.5. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst employed in the process for oligomerization has an Si/Al ratio of 1 to 100.6. The process according to claim 1 , wherein the mesoporous nickel-containing aluminosilicate catalyst contains no titanium dioxide and/ ...

Подробнее
08-02-2018 дата публикации

METHOD FOR PRODUCING COMPOSITE OXIDE AND COMPOSITE OXIDE CATALYST

Номер: US20180036714A1
Принадлежит: SANTOKU CORPORATION

Provided are a method for producing a composite oxide and the composite oxide. The method includes steps of: (a) preparing a Ce aqueous solution not less than 80 mol % of which Ce ions are tetravalent, and a Zr aqueous solution; (b1) mixing the Zr aqueous solution and a portion of the Ce aqueous solution to prepare a mixed aqueous solution (X1); (c1) hydrothermally processing the solution (X1); (b2) adding the remainder of the Ce aqueous solution of step (a) to a colloidal solution (Y1) of a composite salt obtained from step (c1) to prepare a colloidal solution (Y2) of a composite salt; (c2) hydrothermally processing the solution (Y2); (d) mixing a colloidal solution (Y3) of a composite salt obtained from step (c2) with an alkaline solution and a surfactant to prepare a precipitate; and (e) calcining the precipitate. 1. A composite oxide obtained by a method comprising the steps of:(a) preparing at least a cerium aqueous solution 80 to 100 mol % of which cerium ions are tetravalent, and a zirconium aqueous solution containing zirconium ions;(b1) mixing said zirconium aqueous solution and a portion of said cerium aqueous solution prepared in step (a) to prepare a mixed aqueous solution (X1);(c1) hydrothermally processing said mixed aqueous solution (X1);(b2) adding a remainder of said cerium aqueous solution prepared in step (a) to a colloidal solution (Y1) of a composite salt obtained by said hydrothermal processing in step (c1) to prepare a colloidal solution (Y2) of a composite salt;(c2) hydrothermally processing said colloidal solution (Y2) of a composite salt obtained from step (b2) ;(d) mixing a colloidal solution (Y3) of a composite salt obtained by said hydrothermal processing in step (c2) with an alkaline solution and a surfactant to prepare a precipitate; and(e) calcining said precipitate,wherein the composite oxide comprises Ce, Zr, Pr, and oxygen, andwherein the content of Zr is not less than 20 mol% and not more than 50 mol %, and the content of Pr is ...

Подробнее
24-02-2022 дата публикации

CATALYSTS, PROCESSES FOR OBTAINING AND PROCESSES FOR STEAM REFORMING

Номер: US20220055894A1
Принадлежит:

The present invention refers to processes for obtaining steam reforming catalysts containing nickel, cerium, lanthanum and copper oxides, free from potassium or alkali metals, preferably with the oxide layer being located externally with a thickness of less than 0.5 mm on the support particle, preferably the support being based on alumina, magnesium aluminate, hexaaluminates or mixtures thereof. The catalysts according to present invention show high activity, resistance to thermal deactivation and resistance to coke accumulation in the steam reforming reaction of hydrocarbons. 1. A steam reforming catalyst comprising:{'sup': '2', '#text': 'a) an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, having a surface area above 15 m/g; and'}b) a mixture of nickel, copper, lanthanum, and cerium oxides, with the total nickel content, expressed as nickel oxide (NiO) between 5 and 25% w/w; the copper content expressed as copper oxide (CuO) between 0.5 to 5% w/w, a Ni/(La+Ce) atomic ratio between 3 to 5 and a Ce/Al atomic ratio between 1 to 4.2. The steam reforming catalyst according to claim 1 , wherein the inorganic oxide support has a surface area above 60 m/g.3. A process for obtaining the steam reforming catalyst of claim 1 , comprising the following steps:a) preparing a solution in a polar solvent, of a nickel salt, in the form of nickel nitrate, acetate or carbonate together with copper, lanthanum, and cerium salts in the form of nitrates;b) impregnating the solution containing the nickel, copper, cerium, and lanthanum salts in an inorganic oxide support selected from theta-alumina, magnesium aluminate, hexaaluminates, or a mixture thereof, by means of the wet spot technique or by placing the support of inorganic oxide in an excess of solution to form an impregnated material; andc) drying the impregnated material in air, at a temperature ranging between 50° C. and 150° C., and for a time interval in a range ...

Подробнее
24-02-2022 дата публикации

CATALYSTS FOR CONVERTING CARBON DIOXIDE AND METHANE TO SYNTHESIS GAS

Номер: US20220055895A1
Принадлежит:

Catalysts for converting carbon dioxide and methane to synthesis gas include an alumina supported copper-nickel alloy composition having the formula NiCu. The catalyst comprises about 70% to about 98% by weight of alumina in the catalyst, wherein x is an atomic percentage nickel content and y is an atomic percentage copper content, and wherein a ratio of x to y is about 3:1 to about 10:1. In one embodiment, the Ni—Cu catalyst composition according to the present disclosure is derived by state of the art electronic structure calculations based on Density Functional Theory (DFT). 1. A catalyst for converting methane and carbon dioxide to synthesis gas , the catalyst comprising:{'sub': x', 'y, 'an alumina-supported copper-nickel alloy composition having a formula NiCu, wherein x is an atomic percentage nickel content and y is an atomic percentage copper content, and wherein a ratio of x to y is about 3:1 to about 10:1.'}2. The catalyst of claim 1 , wherein the ratio of x toy is about 5:1 to about 9:1.3. The catalyst of claim 1 , wherein the ratio of x toy is about 8:1 to about 10:1.4. The catalyst of claim 1 , wherein the ratio of x toy is about 8:1.5. The catalyst of claim 1 , wherein the catalyst comprises about 70% to about 98% by weight of the alumina in the catalyst.6. The catalyst of claim 1 , wherein the catalyst is prepared by a process comprising incipient wetness impregnation.7. The catalyst of claim 1 , wherein the catalyst retains at least 99% of its optimized activity after at least 10 hours' catalysis reaction.8. The catalyst of claim 7 , wherein the activity is either CHconversion or COconversion.9. The catalyst of claim 1 , wherein the catalyst retains about 100% of its initial activity after at least 10 hours' catalysis reaction.10. The catalyst of claim 9 , wherein the activity is either CHconversion or COconversion.11. The catalyst of claim 1 , wherein the catalyst retains at least 70% of its initial activity after at least 70 hours' catalysis ...

Подробнее
07-02-2019 дата публикации

CATALYST STRUCTURE AND METHOD FOR PRODUCING THE CATALYST STRUCTURE

Номер: US20190039056A1
Принадлежит: FURUKAWA ELECTRIC CO., LTD.

A catalyst structure includes a carrier having a porous structure composed of a zeolite type compound and at least one catalytic material existing in the carrier. The carrier has channels communicating with each other, and the catalytic material is a metal fine particle and exists at least in the channel of the carrier. 1. A catalyst structure comprising:a carrier having a porous structure composed of a zeolite type compound; andat least one catalytic material existing in the carrier,the carrier having channels communicating with each other,the catalytic material being a metal fine particle and existing at least in the channel of the carrier.2. The catalyst structure according to claim 1 , wherein the metal fine particle is a fine particle composed of at least one metal selected from the group consisting of rhodium (Rh) claim 1 , ruthenium (Ru) claim 1 , iridium (Ir) claim 1 , palladium (Pd) claim 1 , platinum (Pt) claim 1 , iron (Fe) claim 1 , cobalt (Co) and nickel (Ni).3. The catalyst structure according to claim 1 , whereinthe channel has any one of a one-dimensional pore, a two-dimensional pore and a three-dimensional pore defined by a framework structure of the zeolite type compound, and an enlarged diameter portion different from any one of the one-dimensional pore, the two-dimensional pore and the three-dimensional pore, andthe catalytic material exists at least at the enlarged diameter portion.4. The catalyst structure according to claim 3 , wherein the enlarged diameter portion makes a plurality of pores forming any one of the one-dimensional pore claim 3 , the two-dimensional pore and the three-dimensional pore communicate with each other.5. The catalyst structure according to claim 3 , wherein an average particle diameter of the metal fine particles is greater than an average inner diameter of the channels and is equal to or smaller than an inner diameter of the enlarged diameter portion.6. The catalyst structure according to claim 1 , wherein a metal ...

Подробнее
18-02-2021 дата публикации

METHANATION REACTOR AND METHOD

Номер: US20210046441A1
Принадлежит:

The present relates to a chemical reactor comprising a catalyst bed enclosed in a reactor vessel and at least one cooling tube placed in the reactor vessel and passing through the catalyst bed, characterized in that the cooling tubes are disposed within the reactor so as to generate thermal gradients of at least 20° C./cm thereby generating hot spots throughout the reactor upon carrying out a reaction. The invention further relates to a methanation process. 121-. (canceled)22. A chemical reactor comprising a catalyst bed enclosed in a reactor vessel and at least one cooling tube placed in the reactor vessel and passing through the catalyst bed , characterized in that the cooling tubes are disposed within the reactor so as to generate thermal gradients of at least 20° C./cm thereby generating hot spots throughout the reactor upon carrying out a reaction.23. The chemical reactor according to claim 22 , characterized in that the catalysts comprises at least one of nickel claim 22 , cobalt and ruthenium based catalysts.24. The chemical reactor according to claim 22 , characterized in that the catalysts comprises 20% wt. Ni/AlOor 3% wt. Ru/AlO.25. The chemical reactor according to claim 22 , characterized in that it comprises at least two cooling tubes.26. The chemical reactor according to claim 22 , characterized in that the minimal distance between the tubes is not less than 1.5 times the tube diameter.27. The chemical reactor according to claim 22 , characterized in that the minimal distance between the tubes is not less than 2 times the tube diameter.28. The chemical reactor according to claim 22 , characterized in that the temperature of the cooling medium is different in the different tubes.29. The chemical reactor according to claim 22 , characterized in that the tubes are fed with a cooling medium.30. The chemical reactor according to claim 22 , characterized in that the thermal gradients are at least 100° C./cm.31. The chemical reactor according to claim 22 , ...

Подробнее
16-02-2017 дата публикации

SYSTEM AND METHOD FOR ULTRA HIGH PURITY (UHP) CARBON DIOXIDE PURIFICATION

Номер: US20170044019A1
Принадлежит:

An Ultra High Purity (UHP) carbon dioxide purification system and a method for purification of UHP carbon dioxide is disclosed. The purification system includes supported nickel oxide and supported palladium oxide. An upper portion of the purification system is at least partially filled with supported nickel oxide, and a lower portion of the purification system is at least partially filled with supported palladium oxide. The upper and lower portions of the purification system have a physical separation but are in fluid communication. The method includes purification or pre-purification of High Purity (HP) carbon dioxide to Ultra High Purity (UHP) levels including feeding carbon dioxide of High Purity grade or better to an Ultra High Purity carbon dioxide purification system. 1. An Ultra High Purity (UHP) carbon dioxide purification system having an inlet and an outlet , wherein its upper portion proximate to said inlet is at least partially filled with supported nickel oxide and its lower portion proximate to said outlet is at least partially filled with supported palladium oxide , and wherein said upper and lower portions of the purification system have a physical separation but are in fluid communication.2. The Ultra High Purity carbon dioxide purification system according to claim 1 , wherein said physical separation and fluid communication is achieved by means of one or more of a metallic mesh claim 1 , a porous septum claim 1 , a screen grid claim 1 , a particle filter or a perforated metallic sheet interposed between said upper portion and said lower portion.3. The Ultra High Purity carbon dioxide purification system according to claim 1 , wherein said physical separation and fluid communication is achieved by means of a first vessel at least partially filled with supported nickel oxide and having an inlet and an outlet claim 1 , which outlet is in communication with an inlet of a second vessel that is at least partially filled with supported palladium oxide.4 ...

Подробнее
23-02-2017 дата публикации

MECHANICALLY FUSED MATERIALS FOR POLLUTION ABATEMENT IN MOBILE AND STATIONARY SOURCES

Номер: US20170050182A1
Автор: Gramiccioni Gary
Принадлежит:

Described are catalyst composites containing mechanically fused components, methods of making the catalyst composites, and methods of using the catalyst composites such as in pollution abatement applications. The catalyst composites contain a core and a shell at least substantially covering the core, the shell mechanically fused to the core and comprising particles mechanically fused to each other, wherein a size ratio of the core to particles of the shell is at least about 10:1. 17-. (canceled)8. A method of making a catalyst composite for pollution abatement , comprising:conducting mechanical fusion for about 30 seconds to about 5 hours at a temperature from about 10° C. to about 100° C. on a mixture of core materials and shell materials, the shell materials comprising an active catalyst and a sorbent material, wherein a particle size ratio of the core materials to the shell materials is at least about 10:1 to provide the catalyst composite.9. The method of claim 8 , wherein mechanical fusion is conducted using a rotor speed from about 1 claim 8 ,000 rpm to about 10 claim 8 ,000 rpm.10. The method of claim 8 , wherein mechanical fusion is conducted for about 5 minutes to about 1 hour at a temperature from about 30° C. to about 70° C.11. The method of claim 8 , wherein mechanical fusion is conducted under at least one of an inert gas claim 8 , air claim 8 , oxygen claim 8 , steam claim 8 , and carbon dioxide.12. The method of claim 8 , further comprising drying the catalyst composite.13. The method of claim 8 , wherein the particle size ratio of the core materials to the shell materials is at least about 40:1.14. The method of claim 8 , wherein the core materials have an average size from about 5 microns to about 1 mm and the shell materials have an average size from about 10 nm to about 100 microns.15. A method of forming a pollution abatement film surrounding a core claim 8 , comprising:mixing core materials and shell materials, the shell materials comprising an ...

Подробнее
23-02-2017 дата публикации

METHOD FOR DRY REFORMING OF AT LEAST ONE ALKANE

Номер: US20170050845A1
Принадлежит:

The present invention relates to a method for dry reforming of at least one alkane carried out in at least one reaction chamber, preferably with a catalytic bed, having a stream of gas passing through same. According to the invention, said at least one reaction chamber comprises a catalytic solid which is cyclically and alternatively exposed to a stream of at least one alkane and a stream containing carbon dioxide, such that said catalytic solid is used as an oxidation vector. 1. Method for dry reforming of at least one alkane , carried out in at least one reaction chamber exposed to a stream of gas , characterised in that said at least one reaction chamber comprises a catalytic solid which is cyclically and alternatively exposed to a stream containing an alkane and to a stream containing carbon dioxide , such that said catalytic solid is used as an oxidation vector , in that said catalytic solid consists of Me1-Ox1-Ox2 where: Me1 is an element that can not be oxidised in carbon dioxide; Ox1 is a reducible oxide in alkane and can be re-oxidised in carbon dioxide; Ox2 is an inert oxide with respect to said alkane and carbon.2. The method according to claim 1 , wherein said Ox2 is chosen from among Al2O3 claim 1 , MgO claim 1 , Ta2O5 claim 1 , Y2O3 claim 1 , ZrO2 and in that the Ox2/(Me1+Ox1) ratio is between 0 and 100.3. The method according to claim 1 , wherein said at least one reaction chamber is a catalytic bed reaction chamber.4. The method according to claim 1 , wherein said at least one reaction chamber is a fixed catalytic bed reaction chamber.5. The method according to claim 1 , wherein the alkane is methane.6. The method according to wherein the Me1/Ox1 mass ratio is approximately between 0 and 0.9.7. The method according to claim 1 , wherein Me1 is chosen from among the following elements taken alone or in combination: Ag claim 1 , Au claim 1 , Co claim 1 , Cr claim 1 , Ir claim 1 , La claim 1 , Mn claim 1 , Ni claim 1 , Os claim 1 , Pd claim 1 , Pt claim ...

Подробнее
15-05-2014 дата публикации

SULFUR TOLERANT CATALYSTS FOR HYDROGEN PRODUCTION BY CARBON DIOXIDE REFORMING OF METHANE-RICH GAS

Номер: US20140134101A1
Принадлежит:

The present application describes a catalyst that is suitable for the COreforming of methane-rich gases, such as biogas, that is resistant to poisoning by sulfur. The catalyst comprises from about 5 wt % to about 20 wt % Ni and 0 wt % to about 10 wt % Co supported on a support having a formula selected from: (a) AlO; (b) MO-AIO; and (c) MO—ZrO-AIO, where MOis either CaO or MgO. 1. A catalyst comprising from about 5 wt % to about 20 wt % Ni and 0 wt % to about 10 wt % Co supported on a support having a formula selected from:{'br': None, 'sub': 2', '3, 'AlO;\u2003\u2003(a)'}{'br': None, 'sup': '1', 'sub': a', 'b', '2', '3, 'MO—AlO; and\u2003\u2003(b)'}{'br': None, 'sup': '1', 'sub': a', 'b', '2', '2', '3, 'MO—ZrO—AlO,\u2003\u2003(c)'}wherein{'sup': '1', 'sub': a', 'b, 'MOis a metal oxide salt in which'}a is 1 and b is 1 or 2, or a is 2 and b is 3; and{'sup': '1', 'Mis selected from Mg and Ca.'}23-. (canceled)4. The catalyst of claim 1 , wherein the support is AlO.5. The catalyst of claim 1 , wherein the support is MO—AlO.6. (canceled)7. The catalyst of claim 1 , wherein the support is MO—ZrO—AlO.8. (canceled)9. The catalyst of claim 1 , wherein the Ni is present in the catalyst in an amount (wt % based on the weight of the total catalyst) of about 10 claim 1 , 10.5 claim 1 , 11 claim 1 , 11.5 claim 1 , 12 claim 1 , 12.5 claim 1 , 13 claim 1 , 13.5 claim 1 , 14 claim 1 , 14.5 or 15 weight percent.1011-. (canceled)12. The catalyst of claim 1 , wherein the Co is present in the catalyst in an amount (wt % based on the weight of the total catalyst) of about 0.5 claim 1 , 1 claim 1 , 1.5 claim 1 , 2 claim 1 , 2.5 claim 1 , 3 claim 1 , 3.5 claim 1 , 4 claim 1 , 4.5 claim 1 , 5 claim 1 , 5.5 claim 1 , 6 claim 1 , 6.5 claim 1 , 7 claim 1 , 7.5 or 8 weight percent.1314-. (canceled)15. The catalyst of claim 1 , wherein the Co is not present in the catalyst.16. The catalyst of claim 1 , wherein the Ni and Co are present in the prepared catalyst in the form of an oxide and claim 1 ...

Подробнее
21-02-2019 дата публикации

STAINLESS STEEL FOAM SUPPORTED CATALYSTS FOR THE OXIDATION OF AROMATIC COMPOUNDS

Номер: US20190054451A1
Принадлежит:

The invention provides a catalyst comprising iron oxide, nickel, ceria or palladium supported on stainless steel foam. The catalyst is effective in oxidising aromatic compounds such as toluene and o-cresol and, advantageously, is particularly effective when the oxidation is carried out at elevated temperatures that correspond to temperatures attained in areas of the aircraft where cabin air is recirculated. 1. A catalyst comprising iron oxide , nickel , ceria or palladium supported on stainless steel foam.2. A catalyst according to claim 1 , wherein the iron oxide claim 1 , nickel claim 1 , ceria or palladium is present in an amount of 2 to 15 wt %.3. A catalyst according to claim 1 , wherein the catalyst comprises iron oxide.4. A catalyst according to claim 1 , wherein the catalyst comprises nickel.5. A catalyst according to claim 1 , wherein the catalyst comprises ceria.6. A catalyst according to claim 1 , wherein the catalyst comprises palladium.8. A method according to claim 7 , wherein the compound in a gas containing oxygen is heated in the presence of said catalyst to a temperature of from 150° C. to 450° C. claim 7 , or 200 to 400° C.9. A method of treating air in an air handling system comprising heating the air in the presence of a catalyst comprising iron oxide claim 7 , nickel claim 7 , ceria or palladium supported on stainless steel foam.10. A method according to claim 9 , wherein the air is heated in the presence of said catalyst to a temperature of from 150° C. to 450° C. or 200 to 400° C.11. A catalyst according to claim 2 , wherein the catalyst comprises iron oxide.12. A catalyst according to claim 2 , wherein the catalyst comprises nickel.13. A catalyst according to claim 2 , wherein the catalyst comprises ceria.14. A catalyst according to claim 2 , wherein the catalyst comprises palladium. The invention relates to stainless steel foam supported catalysts which are useful in the oxidation of aromatic compounds. One aspect of the invention includes ...

Подробнее
15-05-2014 дата публикации

Method for producing hydride using unsaturated compound having carbon number of 4 as raw material

Номер: US20140135511A1
Принадлежит: Mitsubishi Chemical Corp

The present invention relates to a method for producing a hydride having a carbon number of 4, comprising contacting, in liquid phase, an unsaturated compound having a carbon number of 4 as a raw material with a solid catalyst obtained by loading a metal element belonging to Groups 9 to 11 of the long periodic table on a support, thereby performing hydrogenation to produce a corresponding hydride having a carbon number of 4, wherein hydrogenation is performed in the presence of, as a solvent, a 1,4-butanediol having a nitrogen component concentration of 1 ppm by weight to 1 wt % in terms of nitrogen atom.

Подробнее
01-03-2018 дата публикации

METAL CATALYST, MANUFACTURING METHOD AND APPLICATION THEREOF

Номер: US20180057945A1
Принадлежит:

The disclosure provides a metal catalyst having a structure as shown in the Formula (1) or Formula (2), wherein M is palladium, copper, platinum, nickel or silver ions; X is fluorine, chlorine, bromine or iodine; and L is a chelator ligand of nitrogen-containing aromatic ring. The disclosure also provides a manufacturing method and applications of the metal catalyst. 4. The metal catalyst as claimed in claim 1 , wherein the chelating ligand is pyridine claim 1 , 2-pyridine methanol claim 1 , 3-pyridine methanol claim 1 , 4-pyridine methanol claim 1 , 2-pyridineethanol claim 1 , 3-pyridineethanol claim 1 , 4-pyridineethanol claim 1 , 4-amino-6-methylpyridine claim 1 , 3-amino-6-methylpyridine claim 1 , 2-amino-6-methylpyridine claim 1 , 2-amino-5-methylpyridine or 2-amino-4-methylpyridine.5. The metal catalyst as claimed in claim 1 , wherein M is a palladium or nickel ion.6. The metal catalyst as claimed in claim 4 , wherein M is palladium or nickel ions; and X is fluorine claim 4 , chlorine claim 4 , bromine or iodine.7. The metal catalyst as claimed in claim 6 , wherein the chelating ligand is 3-pyridine methanol claim 6 , 2-pyridine methanol or 2-amino-6-methylpyridine.8. The metal catalyst as claimed in claim 1 , wherein the metal catalyst is crystalline.9. A method for preparing a metal catalyst claim 1 , comprising:mixing a metal salt with an alkali metal halide in water to form a metal catalyst precursor, wherein the metal salt is a salt containing a palladium, copper, platinum, nickel or silver ion; andreacting the metal catalyst precursor with a chelating agent having a nitrogen-containing aromatic ring to form a metal catalyst.10. The method for preparing the metal catalyst as claimed in claim 9 , further comprising:a filtration step for separating the metal catalyst from a mixture solution.11. The method for preparing the metal catalyst as claimed in claim 9 , wherein the alkali metal halide is potassium chloride claim 9 , potassium iodide claim 9 , ...

Подробнее
04-03-2021 дата публикации

CONTINUOUS FLOW PROCESSES FOR MAKING BICYCLIC COMPOUNDS

Номер: US20210061730A1
Принадлежит:

Processes for making bicyclic compounds and precursors thereof, and particularly for making [1.1.1]propellane and bicyclo[1.1.1]pentane and derivatives thereof, utilize continuous flow reaction methods and conditions. A continuous process for making [1.1.1]propellane can be conducted under reaction conditions that advantageously minimize clogging of a continuous flow reactor. A continuous flow process can be used to make precursors of [1.1.1]propellane. 1. A continuous flow process for making a bicyclic compound , comprising mixing 1 ,1-dibromo-2 ,2-bis(chloromethyl)cyclopropane with an organometallic reagent in a continuous flow reactor under first reaction conditions selected to (a) react the 1 ,1-dibromo-2 ,2-bis(chloromethyl)cyclopropane with the organometallic reagent to produce [1.1.1]propellane and a salt; and (b) minimize clogging of the continuous flow reactor by the salt.2. The process of claim 1 , wherein the organometallic reagent is selected from the group consisting of n-butyllithium claim 1 , methyllithium claim 1 , methyllithium lithium bromide complex claim 1 , and phenyllithium.3. The process of or claim 1 , wherein the salt comprises LiCl claim 1 , LiBr claim 1 , or both.4. The process of claim 1 , wherein the first reaction conditions comprise mixing a solvent with the 1 claim 1 ,1-dibromo-2 claim 1 ,2-bis(chloromethyl)cyclopropane and the organometallic reagent in the continuous flow reactor claim 1 , wherein the solvent is selected from the group consisting of diethylether claim 1 , diethoxymethane claim 1 , dibutylether claim 1 , methyl tert-butyl ether tetrahydrofuran claim 1 , 2-methyltetrahydrofuran and mixtures thereof.5. The process of claim 1 , wherein the continuous flow reactor comprises a static mixer and wherein the mixing of the 1 claim 1 ,1-dibromo-2 claim 1 ,2-bis(chloromethyl)cyclopropane with an organometallic reagent is conducted with the static mixer at a mixing rate that is effective to minimize clogging of the continuous ...

Подробнее
22-05-2014 дата публикации

HIGH-DURABILITY METAL FOAM-SUPPORTED CATALYST FOR STEAM CARBON DIOXIDE REFORMING AND METHOD FOR PREPARING THE SAME

Номер: US20140138585A1
Принадлежит:

Disclosed is a catalyst support for steam carbon dioxide reforming reaction utilizing the advantages of superior thermal conductivity and thermal dispersion of a metal foam support and a large specific surface area of a carrier material, which allows selective control of coating amount and the thickness of a support layer and prevents cracking on the support surface, using both the sol-gel method and the slurry method that have been used for coating of a metal foam support. 1. A nickel-based catalyst for steam carbon dioxide reforming wherein nickel is used as an active metal and washcoated alumina is used as a metal foam support , wherein the support has a porosity of 80-97% and 10-110 pores per inch (PPI) , the nickel is included in an amount of 0.01-10 wt % based on the support , the alumina is washcoated with an amount of 0.1-30 wt % and the nickel is impregnated in the metal foam support using a nickel precursor.2. The nickel-based catalyst for steam carbon dioxide reforming according to claim 1 , wherein a sol-slurry solution used in the wash coating has an AlO/AIP molar ratio of 1-5.3. The nickel-based catalyst for steam carbon dioxide reforming according to claim 1 , wherein the nickel precursor is at least one compound selected from a group consisting of nickel nitrate claim 1 , nickel bromide claim 1 , nickel chloride claim 1 , nickel acetate and nickel iodide.4. The nickel-based catalyst for steam carbon dioxide reforming according to claim 1 , wherein the metal foam support is selected from a group consisting of a porous nickel metal claim 1 , a porous copper metal claim 1 , a porous silver metal claim 1 , a porous aluminum metal and an iron-chromium alloy.5. The nickel-based catalyst for steam carbon dioxide reforming according to claim 4 , wherein the porous metal is an open-cell porous metal claim 4 , a closed-cell porous metal or a high-melting-point porous metal.6. The nickel-based catalyst for steam carbon dioxide reforming according to claim 4 , ...

Подробнее
28-02-2019 дата публикации

Activated Carbon Supported Ni0Fe0 Nanoparticles for Reductive Transformation of Perfluoroalkyl-Containing Compounds

Номер: US20190060691A1
Принадлежит: PURDUE RESEARCH FOUNDATION

The present application relates to a novel method for reductive degradation of perfluoroalkyl-containing compounds, such as perfluoroalkyl sulfonates, by activated carbon (AC) supported zero valent iron-nickel nanoparticles (nNiFe). 1. A method of degradation of one or more perfluoroalkyl-containing compound , wherein the method comprises the use of zero valent iron (Fe) and zero valent nickel (Ni).2. The method of claim 1 , wherein the zero valent iron (Fe) comprises Fenanoparticles claim 1 , and wherein the surface of Fenanoparticles is coated with zero valent nickel (Ni).3. The method of claim 1 , wherein the zero valent iron (Fe) comprises Fenanoparticles claim 1 , and wherein the surface of Fenanoparticles is plated with zero valent nickel (Ni).4. The method of claim 1 , wherein zero valent iron (Fe) and zero valent nickel (Ni) are supported by active carbon powders.5. The method of claim 1 , wherein the weight percentage of the zero valent nickel (Ni) is 0.1% to 15% of the total weight of zero valent iron (Fe) and zero valent nickel (Ni).6. The method of claim 5 , wherein the weight percentage of the zero valent nickel (Ni) is 0.5% to 5% of the total weight of zero valent iron (Fe) and zero valent nickel (Ni).7. The method of claim 4 , wherein the weight percentage of active carbon powders is 1% to 30% of the total weight of zero valent iron (Fe) claim 4 , zero valent nickel (Ni) claim 4 , and active carbon powders.8. The method of claim 7 , wherein the weight percentage of active carbon powders is 5% to 20% of the total weight of zero valent iron (Fe) claim 7 , zero valent nickel (Ni) claim 7 , and active carbon powders.9. The method of claim 1 , wherein the degradation is carried out between 25-100° C.10. The method of claim 9 , wherein the degradation is carried out between 45-80° C.11. The method of claim 1 , wherein the degradation is carried out for in-situ groundwater remediation.12. The method of claim 1 , wherein the perfluoroalkyl-containing compound ...

Подробнее
17-03-2022 дата публикации

CATALYTIC UPCYCLING OF POLYOLEFINS INTO LUBRICANTS

Номер: US20220081638A1
Принадлежит: UCHICAGO ARGONNE, LLC

A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets. 1. A method producing a lubricant comprising:exposing, at a temperature of 150-350° C. and a pressure of 100-200 psi for 12-72 hours, a plurality polymer molecules to a catalyst comprising a substrate having a plurality of catalytic nanoparticles deposited thereon;docking a first polymer molecule of the plurality of polymer molecules to the catalyst;cleaving at least one carbon-carbon bond of the first polymer molecule;forming a plurality of hydrocarbon fragments from the cleaving;selectively docking to the catalyst a second polymer molecule of the plurality of polymer molecules, preferentially over the plurality of hydrocarbon fragments;cleaving at least one carbon-carbon bond of the second polymer molecule; andforming a second plurality of hydrocarbon fragments.2. The method of claim 1 , wherein exposing the plurality of polymer molecules is for at least 24 hours.3. The method of claim 1 , wherein the plurality of catalytic nanoparticles comprise Pt or Ni.4. The method of claim 1 , wherein the substrate comprises a perovskite.5. The method of claim 4 , wherein the substrate comprises strontium titanate.6. The method of claim 3 , wherein the substrate comprises alumina.7. The method of claim 1 , wherein the plurality of polymer molecules are solvent-free.8. The method of claim 1 , wherein the plurality of polymer molecules have a molecular weight ranging from 400-1000 Da.9. The method of claim 8 , wherein the plurality of hydrocarbon fragments are C30 to C76 alkanes.10. The method of claim 9 , wherein the plurality of hydrocarbon fragments have 10 branches per 1000 carbon to 400 branches per 1000 carbon.11. The method of claim 10 , wherein the plurality of hydrocarbon ...

Подробнее
10-03-2016 дата публикации

GRAPHENE PATTERNING METHOD AND PATTERNING MEMBER

Номер: US20160067680A1
Принадлежит:

A graphene patterning method for forming a graphene of predetermined pattern includes bringing a patterning member in which a catalyst metal layer of the predetermined pattern is formed into contact with a substrate having a graphene oxide film. In bringing the patterning member, the catalyst metal layer is brought into contact with the graphene oxide film. 17-. (canceled)8. A patterning member configured to make contact with a substrate having a graphene oxide film , comprising:a catalyst metal layer of a predetermined pattern formed on a surface of the patterning member making contact with the graphene oxide film.9. The member of claim 8 , wherein the catalyst metal layer comprises at least one metal selected from the group consisting of Cu claim 8 , Ag claim 8 , Au claim 8 , Pt claim 8 , Cr claim 8 , Mn claim 8 , Fe claim 8 , Co claim 8 , Ni and Mo.10. The member of claim 8 , wherein the patterning member comprises a plurality of catalyst metal layers of the predetermined pattern arranged in the portions making contact with the substrate. This application claims the benefit of Japanese Patent Application No. 2013-004490, filed on Jan. 15, 2013 in the Japan Patent Office, the disclosure of which is incorporated herein in its entirety by reference.The present disclosure generally relates to a graphene patterning method and a patterning member which are capable of forming a graphene of a predetermined pattern.Conventionally, a graphene was regarded as a substitute material of ITO which constitutes a transparent conductive film. The graphene is a film made of an array of carbon atoms bonded to one another. The thickness of the graphene is several nanometers which are equivalent to a thickness of several carbon atoms. In general, to form the graphene on a substrate, the substrate is initially dipped into a suspension to form a graphene oxide film on the substrate and the graphene oxide film on the substrate is reduced.The graphene, which is composed solely of carbon ...

Подробнее
10-03-2016 дата публикации

METHOD AND SYSTEM FOR ENHANCING THE MASS TRANSFER RATE OF A SOLUBLE GAS

Номер: US20160068394A1
Автор: Bayless David James
Принадлежит:

A method for enhancing the mass transfer rate of a soluble gas from a gaseous phase to an aqueous phase using a membrane including a catalyst. The method comprises wetting the membrane with a liquid such that a film of the liquid forms on at least a portion of the membrane, the film contacting at least a portion of the catalyst. The method further comprises exposing the wetted membrane to at least one soluble gas, wherein at least a portion of the soluble gas dissolves into the liquid. 1. A method for enhancing the mass transfer rate of a soluble gas from a gaseous phase to an aqueous phase using a membrane including a catalyst , the method comprising:wetting the membrane with a liquid such that a film of the liquid forms on at least a portion of the membrane, the film contacting at least a portion of the catalyst; andexposing the wetted membrane to at least one soluble gas, wherein at least a portion of the soluble gas dissolves into the liquid.2. The method of claim 1 , wherein exposing the wetted membrane to at least one soluble gas further comprises:exposing the wetted membrane to carbon dioxide, ammonia, or other soluble gases.3. The method of claim 1 , wherein wetting the membrane further comprises:flowing the liquid over the membrane.4. The method of claim 1 , wherein wetting the membrane further comprises:moving at least a portion of the membrane into a supply of liquid.5. The method of claim 4 , wherein exposing the wetted membrane to at least one soluble gas further comprises:moving at least a portion of the membrane out of the supply of liquid.6. The method of claim 1 , further comprising:removing the catalyst from the membrane after the catalyst has degraded; andattaching an additional amount of the catalyst to the membrane.7. A system for enhancing the mass transfer rate of a soluble gas from a gaseous phase to an aqueous phase claim 1 , comprising:a membrane configured to allow the formation of a film of aqueous solution thereon, the membrane including ...

Подробнее
12-03-2015 дата публикации

CATALYTIC COMPOSITION FOR THE ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE

Номер: US20150072853A1
Принадлежит:

The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C. 15-. (canceled)6. A method of making a catalytic composition for the electrochemical reduction of carbon dioxide , comprising the steps of:{'sub': 3', '2', '2, 'dissolving nickel nitrate hexahydrate, Ni(NO).6HO, in deionized water to form a nickel precursor solution;'}sonicating the nickel precursor solution;impregnating the sonicated nickel precursor solution in a support material comprising multi-walled carbon nanotubes to form a slurry;sonicating the slurry to form a homogeneous solid solution;removing solids from the homogenous solid solution;drying the solids; andcalcining the dried solids to form the catalytic composition.7. The method of making a catalytic composition for the electrochemical reduction of carbon dioxide as recited in claim 6 , wherein the step of sonicating the slurry comprises sonicating the slurry for about two hours.8. The method of making a catalytic composition for the electrochemical reduction of carbon dioxide as recited in claim 6 , wherein the step of drying the solids comprises drying the solids at a temperature of about 110° C. for a period of about 24 hours.9. The ...

Подробнее
29-05-2014 дата публикации

Semi-permeable particles having metallic catalysts and uses

Номер: US20140148330A1
Принадлежит: Individual

Semi-permeable particle can be used to facilitate chemical reactions. The semi-permeable particles are permeable to molecules having a molar mass of 1000 Daltons or less, have a mode particle size of at least 1 μm, and comprise nanoparticles of catalytically active metallic materials disposed within at least some of multiple discrete cavities in the continuous polymeric phase. The nanoparticles of catalytically active metallic materials (a) comprise one or more elements selected from Groups 8, 9, 10, and 11 of the Periodic Table, and (b) have an effective diameter of at least 1 nm and up to and including 200 nm.

Подробнее
24-03-2022 дата публикации

HYDROALKYLATION OF MONONUCLEAR AROMATIC HYDROCARBONS TO MONO CYCLOALKYL AROMATIC HYDROCARBONS

Номер: US20220088582A1
Принадлежит:

An aspect of the present disclosure relates to a process for preparing a composite hydroalkylation catalyst including: (a) effecting impregnation of a hydrogenation metal on an inorganic oxide to form a metal impregnated inorganic oxide; (b) effecting calcination of the metal impregnated inorganic oxide to obtain a calcined metal impregnated inorganic oxide; (c) preparing a composite mixture comprising a molecular sieve, the calcined metal impregnated inorganic oxide and a binder; (d) preparing an extruded catalyst; and (e) effecting calcination of the extruded catalyst to obtain the composite hydroalkylation catalyst. The composite hydroalkylation catalyst prepared using this process affords dramatic improvement in conversion of mononuclear aromatic hydrocarbon and the yield of the hydroalkyled mononuclear aromatic hydrocarbon (e.g. CHB). 1. A process for preparing a composite hydroalkylation catalyst , said process comprising the steps of:(a) effecting impregnation of a hydrogenation metal on an inorganic oxide to form a metal impregnated inorganic oxide;(b) effecting calcination of the metal impregnated inorganic oxide at a temperature ranging from 250° C. to 500° C. for a time period ranging from 1 hour to 15 hours to obtain a calcined metal impregnated inorganic oxide;(c) preparing a composite mixture comprising a molecular sieve, the calcined metal impregnated inorganic oxide and a binder;(d) kneading the composite mixture to obtain an extruded catalyst; and(e) effecting calcination of the extruded catalyst at a temperature ranging from 250° C. to 400° C. to obtain the composite hydroalkylation catalyst.2. The method as claimed in claim 1 , wherein the composite hydroalkylation catalyst is subjected to reduction at a temperature ranging from 200° C. to 500° C. for a time period ranging from 3 hours to 20 hours.3. The method as claimed in claim 1 , wherein said composite mixture comprises the molecular sieve claim 1 , the calcined metal impregnated inorganic ...

Подробнее
24-03-2022 дата публикации

CONTINUOUS PROCESSES FOR THE SELECTIVE CONVERSION OF ALDOHEXOSE-YIELDING CARBOHYDRATE TO ETHYLENE GLYCOL USING LOW CONCENTRATIONS OF RETRO-ALDOL CATALYST

Номер: US20220089514A1
Принадлежит:

Retro-aldol processes are disclosed that use very low concentrations of retro-aldol catalyst in combination with hydrogenation catalyst of certain activities, sizes and spatial dispersions to obtain the high selectivities to ethylene glycol. 1. A continuous , catalytic process for producing ethylene glycol from an aldose-yielding carbohydrate-containing feed , comprising: (i) the heterogeneous hydrogenation catalyst has a maximum particle dimension of less than about 100 microns, and', '(ii) the hydrogenation catalyst is dispersed in the liquid medium in an amount of less than about 100 grams per liter thereby providing a spatial relationship among catalytically active hydrogenation sites in the liquid medium;, '(a) continuously or intermittently supplying the feed to a reaction zone containing a liquid medium having therein heterogeneous, nickel-containing hydrogenation catalyst, wherein the feed is supplied at a rate of at least about 50 grams per hour of carbohydrate per liter of liquid medium, and wherein said liquid medium is at catalytic conversion conditions including the presence of dissolved hydrogen, a temperature of at least about 235° C., a pH greater than 3 and a residence time sufficient to react at least 99 mass percent of the aldose-yielding carbohydrate, wherein(b) continuously or intermittently supplying to the reaction zone homogeneous, tungsten-containing retro-aldol catalyst the concentration of solubilized tungsten compounds, calculated as tungsten atoms, in the liquid medium in the reactor is from about 200 to 1500 milligrams per liter, wherein the relative amounts of hydrogenation catalyst and retro-aldol catalyst are sufficient to provide, under the catalytic conversion conditions, a cumulative conversion efficiency of the aldose-containing carbohydrate to ethylene glycol of at least 75 percent for a duration of 100 hours; and(c) continuously or intermittently withdrawing from the reaction zone a raw product stream containing ethylene glycol ...

Подробнее
24-03-2022 дата публикации

Continuous processes for the selective conversion of aldohexose-yielding carbohydrate to ethylene glycol using low concentrations of retro-aldol catalyst

Номер: US20220089515A1

Retro-aldol processes are disclosed that use very low concentrations of retro-aldol catalyst in combination with hydrogenation catalyst of certain activities, sizes and spatial dispersions to obtain the high selectivities to ethylene glycol.

Подробнее
05-03-2020 дата публикации

PHOTOCATALYST HAVING HIGH VISIBLE-LIGHT ACTIVITY

Номер: US20200070135A1

A photocatalyst according to the present invention has a structure in which the titanium dioxide doped with the transition metals is supported on the support such that a band gap thereof is low and a specific surface area thereof is high, thereby exhibiting an excellent photocatalytic activity even in a visible light region and providing an excellent effect of adsorbing an organic compound and removing the same even under a condition in which light is not emitted. 1. A photocatalyst comprising:titanium dioxide doped with vanadium (V); anda support on which the titanium dioxide is supported,wherein the support is a polymer matrix having a porous structure,wherein the a polymer matrix has a activating surface with an isocyanate group for chemical bond to titanium dioxide thought silane-based binder,{'sup': '2', 'wherein an average BET specific surface area of the photocatalyst is in a range of 120 to 480 m/g.'}2. The photocatalyst of claim 1 , wherein the photocatalyst has a band gap of 4 eV or less in a wavelength range of 400 to 700 nm.3. The photocatalyst of claim 1 , wherein the photocatalyst comprises 0.1 to 15 parts by weight of the titanium dioxide doped with the transition metal claim 1 , based on 100 parts by weight of the polymer matrix.4. The photocatalyst of claim 1 , wherein an average particle diameter of pores formed in the polymer matrix is in a range of 50 to 500 μm claim 1 , and{'sup': '3', 'an average volume of the pores is in a range of 0.01 to 0.03 cm/g.'}5. The photocatalyst of claim 1 , wherein the polymer matrix comprises one or more selected from the group consisting of a polyurethane resin claim 1 , a polyester resin claim 1 , and polyamide resin. This application is a Division of U.S. patent application Ser. No. 15/761,548 filed on Mar. 20, 2018, which is a National Phase of PCT Patent Application No. PCT/KR2015/012525 having International filing date of Nov. 20, 2015, which claims the benefit of priority of Korean Patent Application Nos. 10 ...

Подробнее
22-03-2018 дата публикации

CATALYST TREATMENT DEVICE AND METHOD FOR MANUFACTURING SAME

Номер: US20180078924A1
Принадлежит:

Provided are a catalyst treatment device and a method of manufacturing the catalyst treatment device. In the catalyst treatment device, the catalyst component can be used in a smaller amount and at a lower cost without need of equipment such as casing, and can suppress excessive pressure loss with adequate voids occurring when the supported catalyst is loaded for use. The catalyst treatment device of the present invention includes a supported catalyst having a corrugated and fragmentary form, wherein the supported catalyst includes a glass paper having a corrugated and fragmentary form, a catalyst activity component supported on the glass paper and having catalytic action, and an inorganic binder necessary to cause the catalyst activity component to be supported on the glass paper and make the glass paper into a corrugated form. 1. A catalyst treatment device including a supported catalyst , wherein the supported catalyst has a corrugated and fragmentary form and includes glass paper having a corrugated and fragmentary form , a catalyst activity component supported on the glass paper and having catalytic action , and an inorganic binder necessary to make the glass paper into a corrugated form , and the supported catalyst is loaded into the catalyst treatment device randomly.2. (canceled)3. The catalyst treatment device of wherein the supported catalyst is selected from the group consisting of a methanation reaction catalyst claim 1 , a reforming reaction catalyst claim 1 , an ammonia decomposition catalyst claim 1 , and a catalyst for purification of an exhaust gas.4. The catalyst treatment device of wherein the inorganic binder is at least one selected from the group consisting of a sol containing inorganic metal oxides and organic and inorganic salts of these metals.5. The catalyst treatment device of wherein the inorganic metal oxides are selected from silica claim 4 , alumina claim 4 , titania claim 4 , zirconia claim 4 , yttria claim 4 , lanthania claim 4 , or ...

Подробнее
12-06-2014 дата публикации

IRON-NICKEL CORE-SHELL NANOPARTICLES

Номер: US20140162868A1
Автор: GREENLEE Lauren

Core-shell nanoparticles and techniques for their synthesis are described herein. Generally, the nanoparticles comprise a core that includes iron and at least one shell disposed about the core that includes nickel. In certain versions, the nanoparticles are free of precious metals. 1. Core-shell nanoparticles comprising:a core component that includes iron; andat least one shell component that includes nickel;wherein the core-shell nanoparticles are free of precious metals.2. The core-shell nanoparticles of wherein the core component also includes at least one element selected from the group consisting of nickel claim 1 , oxygen claim 1 , boron claim 1 , and combinations thereof.3. The core-shell nanoparticles of wherein the core component includes nickel and iron in an atomic ratio in a range of from 0.7:1 to 1.2:1 claim 2 , respectively.4. The core-shell nanoparticles of wherein the at least one shell also includes at least one element selected from the group consisting of iron claim 1 , oxygen claim 1 , and combinations thereof.5. The core-shell nanoparticles of wherein the shell component includes nickel and iron in an atomic ratio in a range of from 0.4:1 to 1.2:1 claim 4 , respectively.6. The core-shell nanoparticles of wherein the at least one shell component includes a first shell and a second shell claim 1 , the first shell disposed between the core and the second shell.7. The core-shell nanoparticles of wherein the first shell includes the nickel.8. The core-shell nanoparticles of wherein the second shell includes the nickel.9. The core-shell nanoparticles of wherein the nanoparticles have an average outer span within a range of from 5 nm to 500 nm.10. The core-shell nanoparticles of wherein the nanoparticles have an average outer span within a range of from 50 nm to 200 nm.11. A method of preparing core-shell nanoparticles having a core that includes iron and a shell that includes nickel claim 9 , the method comprising:producing iron core particles by ...

Подробнее
12-03-2020 дата публикации

SUPPORTED METAL MATERIAL, SUPPORTED METAL CATALYST, METHOD OF PRODUCING AMMONIA, METHOD OF PRODUCING HYDROGEN AND METHOD OF PRODUCING CYANAMIDE COMPOUND

Номер: US20200078771A1
Принадлежит:

Provided are a supported metal material showing high catalytic activity, a supported metal catalyst, a method of producing ammonia and a method of producing hydrogen using the supported metal catalyst, and a method of producing a cyanamide compound. The supported metal material of the present invention is a supported metal material in which a transition metal is supported on a support, and the support is a cyanamide compound represented by the following general formula (1); MCN(1), wherein M represents a group II element of the periodic table, and the specific surface area of the cyanamide compound is 1 mgor more. 1. A supported metal material in which a transition metal is supported on a support , wherein the support is a cyanamide compound represented by the following general formula (1):{'br': None, 'sub': '2', 'MCN\u2003\u2003(1)'}wherein M represents a group II element of the periodic table, and{'sup': 2', '−1, 'a specific surface area of the cyanamide compound is 1 mgor more.'}2. The supported metal material according to claim 1 , wherein M is at least one selected from the group consisting of Ca claim 1 , Sr and Ba.3. The supported metal material according to claim 1 , wherein a loading amount of the transition metal is 0.01 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the support.4. A supported metal catalyst comprising the supported metal material according to .5. The supported metal catalyst according to claim 4 , which is a catalyst for ammonia synthesis.6. The supported metal catalyst according to claim 5 , wherein the transition metal is at least one selected from the group consisting of Ru claim 5 , Co claim 5 , and Fe.7. A method of producing ammonia claim 4 , comprising reacting nitrogen and hydrogen in the presence of the supported metal catalyst according to .8. The method for producing ammonia according to claim 7 , wherein a reaction temperature at the time of reacting nitrogen and hydrogen is 100° ...

Подробнее
25-03-2021 дата публикации

METHOD FOR HYDROGENATING AROMATICS USING A CATALYST OBTAINED BY IMPREGNATION COMPRISING A SPECIFIC SUPPORT

Номер: US20210087476A1
Принадлежит: IFP ENERGIES NOUVELLES

Process for hydrogenating at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650° C., said process being performed in the gas phase or in the liquid phase at a temperature of between 30 and 350° C., at a pressure of between 0.1 and 20 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) mole ratio of between 0.1 and 10 and at an hourly space velocity (HSV) of between 0.05 and 50 h, in the presence of a catalyst comprising an active phase comprising nickel, said active phase not comprising any group VIB metal, and a support comprising an amorphous mesoporous alumina having a connectivity (Z) of greater than 2.7, the connectivity being determined from the nitrogen adsorption/desorption isotherms. 1. A process for hydrogenating at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650° C. , said process being performed in the gas phase or in the liquid phase , at a temperature of between 30 and 350° C. , at a pressure of between 0.1 and 20 MPa , at a hydrogen/(aromatic compounds to be hydrogenated) mole ratio of between 0.1 and 10 and at an hourly space velocity HSV of between 0.05 and 50 h , in the presence of a catalyst comprising an active phase comprising nickel , said active phase not comprising any group VIB metal , and a support comprising an amorphous mesoporous alumina having a connectivity (Z) of greater than 2.7 , the connectivity being determined from the nitrogen absorption/desorption isotherms.2. The process as claimed in claim 1 , in which the nickel content of said catalyst is between 5% and 65% by weight relative to the total weight of the catalyst.3. The process as claimed in claim 1 , in which said alumina support has a connectivity (Z) of between 2.7 and 10.4. The process as claimed in claim 1 , in which the support has a mesopore volume of greater than or equal to 0.40 mL/g. ...

Подробнее
29-03-2018 дата публикации

PROCESS FOR PREPARING A NICKEL-BASED CATALYST, THE NICKEL-BASED CATALYST, AND USE THEREOF IN A STEAM REFORMING PROCESS

Номер: US20180085740A1
Принадлежит: PETROLEO BRASILEIRO S.A. - PETROBRAS

The present invention relates to a process for preparing a nickel-based catalyst promoted with aluminium compounds with increased resistance to thermal deactivation and to the nickel-based catalyst thus obtained. In addition, the present invention relates to the use of said catalyst in a steam reforming process starting from hydrocarbons for producing hydrogen or synthesis gas. 1. Process for preparing a nickel-based catalyst , comprising the step of providing a first nickel-based catalyst , either by providing a commercial nickel-based catalyst or by carrying out steps (a)-(d):a) preparing a solution of nickel salt;b) impregnating a support of one or more inorganic oxides with the solution of nickel salt;c) drying the impregnated material;d) calcining the impregnated material;and additionally comprising the steps of:e) preparing a solution of an inorganic aluminium salt;f) impregnating the first nickel-based catalyst with the solution of inorganic aluminium salt, to act as promoter,g) drying the material impregnated in step f); andh) calcining the material dried in step g),wherein steps (e) to (h) may be repeated until a content from 0.5% to 1% w/w of aluminium is reached.2. Process for preparing a nickel-based catalyst according to claim 1 , characterized in that the nickel salt is selected from nitrate claim 1 , acetate claim 1 , oxalate or carbonate.3. Process for preparing a nickel-based catalyst according to characterized in that the solution of nickel salt additionally comprises one or more elements of the lanthanide group claim 1 , preferably lanthanum or cerium.4. Process for preparing a nickel-based catalyst according to claim 1 , characterized in that the support of one or more inorganic oxides is selected from alumina claim 1 , calcium aluminates claim 1 , magnesium aluminates claim 1 , zirconium oxides claim 1 , lanthanum claim 1 , hexa-aluminates or a mixture thereof.5. Process for preparing a nickel-based catalyst according to claim 1 , characterized ...

Подробнее
29-03-2018 дата публикации

CONTINUOUS PROCESSES FOR THE HIGHLY SELECTIVE CONVERSION OF SUGARS TO PROPYLENE GLYCOL OR MIXTURES OF PROPYLENE GLYCOL AND ETHYLENE GLYCOL

Номер: US20180086681A1
Принадлежит:

Continuous processes for making propylene glycol from ketose-yielding carbohydrates are disclosed which enhance the selectivity to propylene glycol. 2. The process of wherein the feed comprises ketose-yielding and aldose-yielding carbohydrate and a mixture of propylene glycol and ethylene glycol is contained in the product solution.3. The process of wherein the feed comprises sucrose.4. The process of wherein the product solution contains a mass ratio of 1 claim 1 ,2-butanediol to total propylene glycol and ethylene glycol of less than about 1:10.5. The process of wherein the aqueous solution is maintained at a temperature of greater than about 170° C. and less than 230° C. for less than about 15 seconds prior to being passed into the aqueous-hydrogenation medium.6. The process of wherein the heating of the carbohydrate feed from below 170° C. to above 230° C. is at least in part by direct heat exchange by admixing the carbohydrate feed with a warmer fluid.7. The process of wherein the warmer fluid comprises the aqueous-hydrogenation medium.8. The process of wherein the admixing of the carbohydrate feed and warmer fluid involves high shear mixing.9. The process of wherein the admixing of the carbohydrate feed and warmer fluid involves rapid diffusional mixing.10. The process of wherein the heating of the carbohydrate feed from below 170° C. to above 230° C. is at least in part by indirect heat exchange.14. The process of wherein the heating of the carbohydrate feed from below 170° C. to above 230° C. occurs whereupon the carbohydrate is contacted with an aqueous claim 1 , retro-aldol solution containing retro-aldol catalyst in the substantial absence of hydrogenation catalyst.15. The process of wherein the carbohydrate-containing feed contains between about 120 and 800 grams of carbohydrate per liter of aqueous-hydrogenation medium.16. The process of wherein the carbohydrate-containing feed contains aldose and the rate of heating of the carbohydrate feed from below ...

Подробнее
31-03-2016 дата публикации

PROCESS FOR TRANSFORMATION OF A FEEDSTOCK COMPRISING A LIGNOCELLULOSIC BIOMASS USING AN ACIDIC HOMOGENEOUS CATALYST IN COMBINATION WITH A HETEROGENEOUS CATALYST COMPRISING A SPECIFIC SUBSTRATE

Номер: US20160090331A1
Принадлежит: IFP ENERGIES NOUVELLES

Process for transformation of a feedstock of lignocellulosic biomass and/or the carbohydrates, into mono-oxidized or poly-oxidized compounds, wherein the feedstock is contacted, simultaneously, with a catalytic system that comprises one or more homogeneous catalysts selected from Brønsted acids and heterogeneous catalysts comprising at least one metal selected from groups 6 to 11 and 14 of the periodic table, and a substrate selected from perovskites of formula ABO, in which A is Mg, Ca, Sr, Ba, and La, and B is selected from Fe, Mn, Ti and Zr, oxides of lanthanum, neodymium, yttrium, cerium, and niobium, or mixtures thereof, and mixed oxides of aluminates of zinc, copper, and cobalt, or mixtures thereof, in the same reaction chamber, with at least one solvent, being water or water with at least one other solvent, under reducing atmosphere, and temperature of 50° C. to 300° C., and pressure of 0.5 MPa to 20 MPa. 1. Process for transformation of a feedstock that is selected from among the lignocellulosic biomass and the carbohydrates , by themselves or in a mixture , into mono-oxidized or poly-oxidized compounds , in which said feedstock is brought into contact , simultaneously , with a catalytic system that comprises one or more homogeneous catalyst(s) and one or more heterogeneous catalyst(s) , in the same reaction chamber , in the presence of at least one solvent , with said solvent being water by itself or in a mixture with at least one other solvent , under a reducing atmosphere , and at a temperature of between 50° C. and 300° C. , and at a pressure of between 0.5 MPa and 20 MPa , in whichSaid homogeneous catalyst(s) is/are selected from among the inorganic Brønsted acids and the organic Brønsted acids.{'sub': '3', 'Said heterogeneous catalyst(s) comprising at least one metal that is selected from among the metals of groups 6 to 11 and the metals of group 14 of the periodic table, and a substrate that is selected from among the perovskites of general formula ...

Подробнее
21-03-2019 дата публикации

AMMONIA CRACKING

Номер: US20190084831A1
Принадлежит: Equinor Energy AS

A process for generating power using a gas turbine, comprising the steps of: (i) vaporising and pre-heating liquid ammonia to produce pre-heated ammonia gas; (ii) introducing the pre-heated ammonia gas into an ammonia-cracking device suitable for converting ammonia gas into a mixture of hydrogen and nitrogen; (iii) converting the pre-heated ammonia gas into a mixture of hydrogen and nitrogen in the device; (iv) cooling the mixture of hydrogen and nitrogen to give a cooled hydrogen and nitrogen mixture; (v) introducing the cooled hydrogen and nitrogen mixture into a gas turbine; and (vi) combusting the cooled hydrogen and nitrogen mixture in the gas turbine to generate power. 1. A process for generating power using a gas turbine , comprising the steps of:(i) vaporising and pre-heating liquid ammonia to produce pre-heated ammonia gas;(ii) introducing said pre-heated ammonia gas into an ammonia-cracking device, wherein said device is suitable for converting ammonia gas into a mixture of hydrogen and nitrogen;(iii) converting said pre-heated ammonia gas into a mixture of hydrogen and nitrogen in said device;(iv) cooling said mixture of hydrogen and nitrogen to give a cooled hydrogen and nitrogen mixture;(v) introducing said cooled hydrogen and nitrogen mixture into a gas turbine; and(vi) combusting said cooled hydrogen and nitrogen mixture in said gas turbine to generate said power.2. A process as claimed in claim 1 , wherein a fuel source assists the conversion of said pre-heated ammonia gas into said mixture of hydrogen and nitrogen in said ammonia-cracking device claim 1 , optionallywherein said fuel source comprises a portion of said cooled hydrogen and nitrogen mixture, preferablywherein said fuel source comprises 10-20% of said cooled hydrogen and nitrogen mixture.3. (canceled)4. (canceled)5. A process as claimed in claim 1 , wherein said vaporising and pre-heating of said liquid ammonia occurs at a temperature of 300-700° C. and/or at a pressure of 2-50 barg.6. ( ...

Подробнее
05-05-2022 дата публикации

CONTINUOUS PROCESSES FOR THE SELECTIVE CONVERSION OF ALDOHEXOSE-YIELDING CARBOHYDRATE TO ETHYLENE GLYCOL USING LOW CONCENTRATIONS OF RETRO-ALDOL CATALYST

Номер: US20220135505A1
Принадлежит:

Retro-aldol processes are disclosed that use very low concentrations of retro-aldol catalyst in combination with hydrogenation catalyst of certain activities, sizes and spatial dispersions to obtain the high selectivities to ethylene glycol.

Подробнее
01-04-2021 дата публикации

CATALYST FOR CATALYTIC OXIDATIVE CRACKING OF HYDROGEN SULPHIDE WITH CONCURRENT HYDROGEN PRODUCTION

Номер: US20210094822A1

Disclosed is a catalyst suitable for the catalytic oxidative cracking of a HS-containing gas stream. The catalyst comprises at least one or more active metals selected from the group consisting of iron, cobalt, and nickel, supported by a carrier comprising ceria and alumina. The active metal is preferably in the form of its sulphide. Also disclosed is a method for the production of hydrogen from a HS-containing gas stream, comprising subjecting the gas stream to catalytic oxidative cracking so as to form Hand S, using a catalyst in accordance with any one of the composition claims. 1. A method for the production of hydrogen from a HS-containing gas stream , comprising subjecting the gas stream to catalytic oxidative cracking so as to form Hand S , using a catalyst comprising at least one active metal selected from the group consisting of iron , cobalt , nickel , and combinations thereof , wherein said active metal is supported by a carrier comprising ceria and alumina.2. The method of claim 1 , wherein the composition of the catalyst comprises nickel.3. The method of claim 1 , wherein the catalytic oxidative cracking is conducted with a molar ratio HS/Oin the feedstock higher than 2:1 claim 1 , preferably in the range of from 2:1 to 6:1.4. The method of claim 3 , wherein the ratio is in a range of from 3:1 to 5:1 claim 3 , preferably 3.5:1 to 4.5:1.5. The method of claim 1 , wherein the catalytic oxidative cracking is conducted using an oxygen-containing gas-stream comprising at least 40 vol. % oxygen claim 1 , preferably at least 60 vol. % oxygen.6. The method of claim 5 , wherein the oxygen-containing gas-stream is oxygen having a purity of from 90-100 vol. %. 7.7. The method of claim 1 , wherein the catalytic oxidative cracking is conducted at a temperature in a range from 700° C. to 1300° C. claim 1 , preferably in a range from 950° C. to 1250° C.8. The method of claim 1 , comprising a further step of subjecting formed SO claim 1 , and optionally also COS and/or ...

Подробнее
26-06-2014 дата публикации

CATALYTIC COMPOSITION FOR THE ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE

Номер: US20140174916A1
Принадлежит:

The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C. 1. A catalytic composition for the electrochemical reduction of carbon dioxide , comprising a metal oxide supported on multi-walled carbon nanotubes , wherein the metal oxide comprises about 20 wt % of the catalytic composition.2. The catalytic composition for the electrochemical reduction of carbon dioxide as recited in claim 1 , wherein the metal oxide comprises nickel oxide (NiO).3. An electrode for electrochemical reduction of carbon dioxide having the composition of coated thereon.4. The catalytic composition for the electrochemical reduction of carbon dioxide as recited in claim 1 , wherein the metal oxide comprises tin dioxide (SnO).5. An electrode for electrochemical reduction of carbon dioxide having the composition of coated thereon.6. A method of making a catalytic composition for the electrochemical reduction of carbon dioxide claim 4 , comprising the steps of:{'sub': 3', '2', '2, 'dissolving nickel nitrate hexahydrate, Ni(NO)·6HO, in deionized water to form a nickel precursor solution;'}sonicating the nickel precursor solution;impregnating the sonicated nickel precursor solution in a ...

Подробнее
06-04-2017 дата публикации

Nickel-Doped Copper-Manganese Spinel as Zero-PGM Catalyst for TWC Applications

Номер: US20170095800A1
Принадлежит: Clean Diesel Technologies, Inc.

Variations of ZPGM catalyst material compositions including doped Cu—Mn spinel supported on doped zirconia support oxide are disclosed. The disclosed ZPGM catalyst compositions include a small substitution of Ni within the A-site or B-site cation of a Cu—Mn spinel supported on doped zirconia support oxide, and produced by the incipient wetness (IW) methodology. Bulk powder ZPGM catalyst compositions are subjected to XRD analyses to determine the spinel phase formation and stability. Additionally, bulk powder ZPGM catalyst compositions are subjected to a steady-state isothermal sweep test to determine NO, CO, and THC conversion. The ZPGM catalyst material compositions including Ni-doped Cu—Mn spinel supported on doped zirconia support oxide exhibit improved levels in NO and CO conversions, which can be employed in ZPGM catalysts for a plurality of TWC applications, thereby leading to a more effective utilization of ZPGM catalyst materials with high thermal and chemical stability in TWC products. 1. A catalyst composition comprising a spinel of formula CuNiMnOwherein x is about 0.01 to about 0.5.2. The catalyst composition of claim 1 , wherein x is about 0.01 to about 0.2.3. The catalyst composition of claim 2 , wherein x is about 0.02.4. The catalyst composition of claim 1 , further comprising at least one support oxide claim 1 , wherein the spinel of formula CuNiMnOis deposited on the at least one support oxide.5. The catalyst composition of claim 4 , wherein the at least one support oxide is selected from the group consisting of MgAlO claim 4 , AlO—BaO claim 4 , AlO—LaO claim 4 , ZrO—CeO—NdO—YO claim 4 , CeO—ZrO claim 4 , CeO claim 4 , SiO claim 4 , Alumina silicate claim 4 , ZrO-YO-SiO claim 4 , AlO—CeO claim 4 , AlO—SrO claim 4 , TiO—ZrO claim 4 , TiO—NbO claim 4 , SnO—TiO claim 4 , ZrO—SnO—TiO claim 4 , BaZrO claim 4 , BaTiO claim 4 , BaCeO claim 4 , ZrO—PO claim 4 , ZrO—YO claim 4 , ZrO—NbO claim 4 , Al—Zr—Nb claim 4 , and Al—Zr—La.6. The catalyst composition ...

Подробнее
14-04-2016 дата публикации

CATALYSTS FOR RENEWABLE HYDROGEN PRODUCTION

Номер: US20160101409A1
Принадлежит: Phillips 66 Company

A catalyst for steam reforming. The catalyst comprises an active site of NiCu or NiCuZn, from about 15 wt % to about 25 wt % of the catalyst, a composition comprising at least one promoter and at least one support modifier, from about 5 wt % to about 30 wt % of the catalyst, and a support. 1. A catalyst for steam reforming , comprising:an active site consisting essentially of NiCu or NiCuZn, from about 15 wt % to about 25 wt % of the catalyst;a composition comprising at least one promoter and at least one support modifier, from about 15 wt % to about 25 wt % of the catalyst; anda support.2. The catalyst of claim 1 , wherein the composition comprises three different components.3. The catalyst of claim 1 , wherein the composition comprises an alkaline earth metal.4. The catalyst of claim 1 , wherein the composition comprises an alkaline earth metal from about 0.1 wt % to about 5 wt % of the catalyst5. The catalyst of claim 1 , wherein the composition comprises a rare earth element.6. The catalyst of claim 1 , wherein the composition comprises a rare earth element from about 13 wt % to about 23 wt % of the catalyst7. The catalyst of claim 1 , wherein the composition comprises an alkali metal.8. The catalyst of claim 1 , wherein the composition comprises an alkali metal from about 0.1 wt % to about 5 wt % of the catalyst9. The catalyst of claim 1 , wherein the composition comprises an alkaline earth metal claim 1 , a rare earth metal and an alkali metal.10. The catalyst of claim 1 , wherein the promoter contains K.11. The catalyst of claim 1 , wherein the support modifier contains Ce.12. The catalyst of claim 1 , wherein the support modifier contains Ba.13. The catalyst of claim 1 , wherein the support modifier contains Mg.14. The catalyst of claim 1 , wherein the promoter contains Au.15. A catalyst for steam reforming claim 1 , comprising:an active site consisting essentially of NiCuZn or NiCu;a composition consisting essentially of KCeBa; andan alumina support.16. The ...

Подробнее
16-04-2015 дата публикации

Nano-Material

Номер: US20150104646A1
Принадлежит:

A fluffy nano-material and method of manufacture are described. At 2000× magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours. 1. A nanomaterial comprising:a metal powder support material;nanoparticles formed on a surface of the metal powder support material; andcarbon nanotubes anchored directly to the surface of the metal powder support material and anchored directly to the nanoparticles on the surface of the metal powder support material.2. The nanomaterial of wherein the individual carbon nanotubes have a length of at least 100 microns.3. The nanomaterial of wherein the metal powder support material includes support particles having a diameter less than 100 microns.4. The nanomaterial of wherein the metal powder support material includes support particles having a diameter of 100 microns or greater.5. The nanomaterial of wherein the metal powder support material includes a plurality of nano-scale features formed on the surface of the metal powder support material.6. The nanomaterial of wherein the plurality of nano-scale features are formed by ball milling the metal powder support material.7. The nanomaterial of wherein the metal powder support material comprises NiAl powder.8. The nanomaterial of wherein the nanoparticles comprise one of iron claim 7 , nickel claim 7 , and cobalt containing ions.9. The nanomaterial of wherein the metal powder support material is selected from a group consisting of Sc claim 1 , Ni claim 1 , Fe claim 1 , Cr claim 1 , Co claim 1 , Ti claim 1 , V claim 1 , Mn claim 1 , Cu claim 1 , and Zn containing ...

Подробнее
26-03-2020 дата публикации

PROCESS FOR THE OLIGOMERIZATION OF ETHYLENE IN A COMPARTMENTALIZED GAS/LIQUID REACTOR

Номер: US20200094213A1
Принадлежит: IFP ENERGIES NOUVELLES

Compartmentalized reactor which makes possible the oligomerization of olefins to give linear olefins and preferably to give linear α-olefins, comprising a reaction chamber and at least one heat exchanger(s). The compartmentalized reactor is also employed in an oligomerization process. 2. The reactor as claimed in claim 1 , in which the compartmentalization means are provided in the form of perforated plates.3. The reactor as claimed in claim 1 , in which at least one heat exchanger is located inside the reaction chamber.4112. The reactor as claimed in claim 3 , comprising a single heat exchanger extending along the vertical axis of the reaction chamber () in each reaction zone (Z claim 3 , Z claim 3 , . . . claim 3 , Zn).521212. The reactor as claimed in claim 1 , comprising a plurality of heat exchangers () located outside the reaction chamber () claim 1 , each heat exchanger () being associated with a reaction zone (Z claim 1 , Z claim 1 , . . . claim 1 , Zn).62330. The reactor as claimed in claim 1 , comprising between 2 and 30 reaction zones (Z claim 1 , Z claim 1 , . . . claim 1 , Z).7. An olefin oligomerization process employing the reactor as claimed in claim 1 , at a pressure between 1.0 and 10.0 MPa and at a temperature between 0° C. and 200° C. claim 1 , comprising the following stages:{'b': '1', 'a) the olefin and a catalytic oligomerization system comprising at least one metal precursor and at least one activating agent are introduced into the liquid phase of the reaction chamber ();'}{'b': 1', '2, 'b) said olefin and said system are brought into contact in each reaction zone (Z, Z, . . . , Zn);'}{'b': '2', 'c) the reaction medium is cooled by means of at least one heat exchanger ();'}{'b': '7', 'd) a liquid reaction effluent () is recovered in the upper part of the reaction chamber of the reactor.'}8. The oligomerization process as claimed in claim 7 , in which the heat exchanger(s) decrease the temperature of the reaction medium by 1.0 to 11.0° C.9. ...

Подробнее
13-04-2017 дата публикации

CATALYTIC LAYER AND USE THEREOF IN OXYGEN-PERMEABLE MEMBRANES

Номер: US20170100697A1
Принадлежит:

The invention relates to a catalytic activation layer for use in oxygen-permeable membranes, which can comprise at least one porous structure formed by interconnected ceramic oxide particles that conduct oxygen ions and electronic carriers, where the surface of said particles that is exposed to the pores is covered with nanoparticles made from a catalyst, the composition of which corresponds to the following formula: 2. A The catalytic activation layer of claim 1 , wherein the porous structure is made of mixtures of particles having two different compositions and crystalline phases:a first phase which is made of cerium oxide partially substituted by one element selected from the group consisting of Zr, Gd, Pr, Sm, Nd, Er, Tb and combinations thereof, and has crystalline structure of the florite type, and has an ionic conductivity greater than 0.001 S/cm under operating conditions;a second phase comprising a mixed oxide with a spinel type structure, comprising at least one metal selected from the group consisting of Fe, Ni, Co, Al, Cr, Mn and combinations thereof, and has a total conductivity greater than 0.05 S/cm under operating conditions.3. A The catalytic activation layer according to claim 1 , wherein the porous structure consists of mixtures of particles having two different compositions and crystalline phases:a first phase comprising cerium oxide partially substituted by an element selected from the group consisting of Zr, Gd, Pr, Sm, Nd, Er, Tb and combinations thereof, and has a crystalline structure of the florite type, and has ionic conductivity greater than 0.001 S/cm under operating conditions;a second phase comprising a mixed oxide with perovskite type structure comprising at least one metal selected from the group consisting of lanthanides, Fe, Ni, Co, Cr, Mn and combinations thereof and has a total conductivity greater than 0.05 S/cm under operating conditions.4. A process for obtaining producing a catalytic activation layer described in comprising ...

Подробнее
26-03-2020 дата публикации

MULTICOMPONENT EXHAUST TREATMENT SYSTEM INCLUDING AN OXYGEN STORAGE CATALYST

Номер: US20200095915A1
Принадлежит:

Methods and systems are provided for a multicomponent aftertreatment device arranged in a vehicle exhaust gas passage. In one example, a system may include an oxygen storage catalyst and an underbody trap catalyst comprising metal modified zeolite, the oxygen storage catalyst arranged upstream of the underbody trap catalyst in an exhaust passage of the vehicle. 1. A system for a vehicle , comprising:an oxygen storage catalyst; andan underbody trap catalyst comprising metal modified zeolite, the oxygen storage catalyst arranged upstream of the underbody trap catalyst in an exhaust passage of the vehicle.2. The system of claim 1 , wherein the oxygen storage catalyst comprises an oxygen storage material loaded on or impregnated in a carrier body claim 1 , the oxygen storage material including nickel claim 1 , iron claim 1 , and/or cerium.3. The system of claim 2 , wherein the carrier body comprises cordierite claim 2 , zirconium oxide claim 2 , silicon carbide claim 2 , or silica gel.4. The system of claim 2 , wherein the oxygen storage material is present in the oxygen storage catalyst at 10% or greater weight per weight of the carrier body.5. The system of claim 1 , wherein the underbody trap catalyst further comprises a three-way catalyst washcoat claim 1 , the three-way catalyst washcoat including one or more platinum group metals claim 1 , and wherein the metal modified zeolite comprises platinum group metal modified zeolite.6. The system of claim 1 , further comprising an engine coupled to the exhaust passage and a three-way catalyst coupled downstream of the engine and upstream of the oxygen storage catalyst in the exhaust passage of the vehicle claim 1 , wherein the three-way catalyst is positioned in the exhaust passage 13-33 cm from the engine claim 1 , and wherein the underbody trap catalyst is positioned in the exhaust passage 25 cm or greater from the three-way catalyst.7. The system of claim 1 , further comprising a controller storing instructions in non- ...

Подробнее
04-04-2019 дата публикации

ATOMICALLY DISPERSED METAL SPECIES IN AN IONIC LIQUID ON THE SURFACE OF A CARBON MATERIAL HAVING SP2 HYBRIDIZATION, AND METHOD FOR THE PREPARATION THEREOF

Номер: US20190099742A1
Принадлежит:

The present invention relates to a catalytically active material, comprising atomically dispersed metal species on the surface of a carbon material, wherein the atomically dispersed metal species are dispersed in an ionic liquid, and wherein the surface of the carbon material comprises carbon atoms having sp2 hybridization; ink for coating electrodes comprising the catalytically active material; an electrode coated with the catalytically active material; an electrolyzer comprising an electrode coated with the catalytically active material; use of the catalytically active material, the electrode, or the electrolyzer for oxidation, the reduction of oxygen, or the electrochemical oxidation of water; and a process for making the catalytically active material comprising the steps of atomically dispersing a metal species in an ionic liquid to form a first composition, and mixing the first composition with a carbon material having carbon atoms with sp2 hybridization on the surface. 1. A catalytically active material , comprisingatomically dispersed metal species on the surface of a carbon material,wherein the atomically dispersed metal species are dispersed in an ionic liquid, andwherein the surface of the carbon material comprises carbon atoms having sp2 hybridization.2. The catalytically active material according to claim 1 , wherein the atomically dispersed metal species comprise one or more species selected from the group consisting of: alkali metal species claim 1 , alkaline earth metal species claim 1 , and transition metal species.3. The catalytically active material according to claim 2 , wherein the alkali metal species comprises a lithium ion claim 2 , and the transition metal species comprises an Mn claim 2 , Fe claim 2 , Co claim 2 , Ni claim 2 , Zn claim 2 , or W ion.4. The catalytically active material according to claim 1 , wherein the ionic liquid comprises an unsaturated bond present in a heterocyclic or heteroaromatic group claim 1 , wherein a positive ...

Подробнее
04-04-2019 дата публикации

NICKEL CATALYST FOR DRY AND LOW TEMPERATURE STEAM REFORMING OF METHANE

Номер: US20190099744A1
Принадлежит:

This invention relates to a novel nickel catalyst and a novel one-pot solution combustion synthesis of that catalyst for the COreforming and low temperature steam reformation of methane. The novel nickel catalyst has exceptional activity for dry reforming and steam reforming of methane, and exhibits excellent resilience to deactivation due to carbon formation. 1. A catalyst composition comprising:a nickel species, andalumina, the catalyst is in form of nanoparticulate,', {'sub': 2', '4, 'claim-text': {'sub': 2', '4, 'wherein NiAlOis the main form of the nickel species;'}, 'the nickel species comprises NiAlOwith Ni, NiO, or combination of Ni and NiO;'}, 'the nickel species is dispersed on the surface and in the bulk of the alumina, wherein the nickel species has a higher concentration on the surface of the alumina than in the bulk of the alumina., 'wherein'}2. The catalyst composition of claim 1 , wherein the catalyst has a BET surface area of at least 88 m/g.3. The catalyst composition of claim 1 , wherein the catalyst has a BET surface of at least 70 claim 1 , 80 claim 1 , 90 claim 1 , 100 claim 1 , 110 claim 1 , 120 claim 1 , 130 claim 1 , 140 claim 1 , 150 claim 1 , 160 claim 1 , 170 claim 1 , 180 claim 1 , or 190 m/g.4. The catalyst composition of claim 1 , wherein the catalyst has a BET surface in the range of 70 m/g to 200 m/g.5. The catalyst composition of claim 1 , wherein the nickel specie is present in the catalyst at about 5 to about 10 wt %.6. The catalyst composition of claim 1 , wherein the nickel species is present in the catalyst at about 5 wt % claim 1 , about 6 wt % claim 1 , about 7 wt % claim 1 , about 8 wt % claim 1 , about 9 wt % claim 1 , or about 10 wt %.7. The catalyst composition of claim 1 , wherein the nickel specie is present on the surface of the alumina at 7.75-13.52 wt %.8. The catalyst composition of claim 1 , wherein the nickel specie is present on the surface of the alumina at about 6 wt % to about 15 wt %.9. The catalyst ...

Подробнее
29-04-2021 дата публикации

CERIA-SUPPORTED METAL CATALYSTS AND PROCESSES

Номер: US20210121854A1
Принадлежит: UNIVERSITY OF WYOMING

Provided herein are catalyst materials and processes for processing hydrocarbons. For example, doped ceria-supported metal catalysts are provided exhibiting good activity and stability for commercially relevant DRM process conditions including low temperature and long term operation. 2. (canceled)3. The method of claim 1 , wherein said method is for production of a syngas product and/or for dry reforming of methane.4. (canceled)5. (canceled)6. (canceled)7. (canceled)8. The method of claim 1 , wherein said hydrocarbon feedstock is obtained or derived from an industrial process that generates both carbon dioxide and methane or an industrial process that generates carbon dioxide in proximity to a source of methane.9. (canceled)10. The method of claim 1 , wherein said hydrocarbon feedstock comprises a product from one or more processes selected from the group of:i. a coal pyrolysis process;ii. a petrochemical oxidization process;iii. a sintering process;iv. a furnace process;v. a kiln process;vi. a steam reforming process;vii. an ammonia production process;viii. a fuel production or treatment process;ix. a mining process; andx. any process that produces carbon dioxide.11. (canceled)12. The method of claim 1 , wherein said doped ceria-supported metal catalyst comprises said one or more metals (M) dispersed on a doped catalyst support characterized by the formula CeBO; wherein said doped catalyst support maintains the structure of pure ceria and produces mixed metal oxides.13. (canceled)14. The method of claim 1 , wherein said one or more metals (M) are provided as particles or clusters having an average size dimension up to 1 micron and wherein the weight percent of said one or more metals (M) in the catalyst is selected from the range of 0.1-20 wt %.15. (canceled)16. The method of claim 1 , wherein said one or more metals (M) in formula (FX1) is Ni; and wherein Ni has a weight percent in the catalyst selected from the range of 1.5-7 wt %.17. (canceled)18. The method of ...

Подробнее
29-04-2021 дата публикации

Catalytic funneling of phenolics

Номер: US20210122691A1
Принадлежит: KU Leuven Research and Development

In general, present invention concerns an integrated wood-to-xylochemicals biorefinery, enabling production of renewable phenol, phenolic oligomers, propylene, and carbohydrate pulp from lignocellulosic biomass.

Подробнее
10-07-2014 дата публикации

NANOSCALE NICKEL-BASED CATALYTIC MATERIAL

Номер: US20140194279A1
Принадлежит: Ovonic Battery Company, Inc.

The performance of an ABtype metal hydride alloy is improved by adding an element to the alloy which element is operative to enhance the surface area morphology of the alloy. The alloy may include surface regions of differing morphologies. 1. A catalyst powder , comprising:a support matrix characterized by the presence of metallic catalytic nickel particles having an average particle size of 5-15 angstroms distributed therethroughout.2. A catalyst powder as in claim 2 , wherein the average particle size is 7-12 angstroms.3. A catalyst powder as in claim 1 , wherein the nickel particles are nickel alloys.4. A catalyst powder as in claim 3 , wherein the powder is formed of a hydrogen storage material.5. A catalyst powder as in claim 1 , wherein the proximity between adjacent particles is about 300 angstroms.6. A catalyst powder as in claim 1 , wherein said support matrix comprises carbon.7. A catalyst powder as in claim 1 , wherein said catalytic particles are graded within said support matrix claim 1 , said particles being graded in at least one property selected from the group consisting of composition claim 1 , concentration and size.8. A catalyst powder as in claim 1 , wherein said catalytic particles are uniformly distributed throughout the support matrix.9. A catalyst powder as in claim 1 , wherein said nickel particles lack platinum and palladium.10. A catalyst powder as in claim 1 , wherein said support matrix includes at least one metal oxide.11. A catalyst powder as in claim 10 , wherein said metal oxide comprises at least one element selected from the group consisting of Ni claim 10 , Co claim 10 , Mn claim 10 , Ti claim 10 , Zr claim 10 , Fe claim 10 , and the rare earth elements.12. A catalyst powder as in claim 11 , wherein said catalytic particles are formed by leaching at least a substantial portion of a bulk material claim 11 , said bulk material including the leached elements.13. A catalyst powder as in claim 12 , wherein said bulk material is a ...

Подробнее
13-05-2021 дата публикации

Methods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes

Номер: US20210140054A1
Принадлежит: Columbia University of New York

A system for producing hydrogen gas from biomass is disclosed that includes a first reaction chamber having one or more hydroxides, a Ni/ZrO2 catalyst, and a source of moistened seaweed biomass therein. A heat source is in communication with the first reaction chamber. One or more product streams exit the first reaction chamber including, hydrogen gas, a carbonate, or combinations thereof. A recycle stream provides recycled hydroxide to the first reaction chamber and the product stream is produced as a result of reaction of the seaweed biomass source with the one or more hydroxides in the presence of the Ni/ZrO2 catalyst.

Подробнее
17-07-2014 дата публикации

CATALYST FOR METHANATION OF CARBON DIOXIDE, PREPARATION METHOD AND USAGE THEREOF

Номер: US20140200279A1

A catalyst for methanation of carbon dioxide. The catalyst is formed by mixing ash from a biomass power plant with a nickel compound and calcining the resulting mixture. The catalyst formed by calcination includes between 2 and 20 wt. % of nickel. 1. A catalyst for methanation of carbon dioxide , the catalyst being formed by mixing ash from a biomass power plant with a nickel compound and calcining a resulting mixture , the catalyst comprising between 2 and 20 wt. % of nickel.2. The catalyst of claim 1 , wherein the catalyst comprises between 5 and 15 wt. % of nickel.3. The catalyst of claim 1 , wherein the catalyst comprises between 10 and 20 wt. % of nickel.4. The catalyst of claim 1 , wherein the nickel compound is selected from the group consisting of nickel nitrate claim 1 , nickel oxalate claim 1 , nickel formate claim 1 , nickel acetate claim 1 , nickel citrate claim 1 , nickel tartrate claim 1 , and a mixture thereof.5. The catalyst of claim 1 , wherein the ash from the biomass power plant is collected in a bag dust collector and has an average particle size of between 10 and 15 μm.6. The catalyst of claim 4 , wherein the average particle size of the ash from the biomass power plant is between 10 and 15 μm.7. A method for preparing the catalyst for methanation of carbon dioxide of claim 1 , the method comprising the following steps:1) preparing an aqueous solution comprising between 5 and 30 wt. % of the nickel compound;2) calcining the ash from the biomass power plant at a temperature of between 300 and 400° C. for between 20 and 40 min for removing combustible impurities from the ash from the biomass power plant;3) calculating doses of raw materials according to a desired weight percent of nickel in a catalyst product, mixing the aqueous solution with the ash from the biomass power plant after calcinations in step 2), and stirring a resulting mixture for between 5 and 10 h for uniformly impregnating the mixture;4) desiccating the ash from the biomass power ...

Подробнее
04-05-2017 дата публикации

CATALYST WITH A MESOPOROUS AND MACROPOROUS CO-MIXED NICKEL ACTIVE PHASE HAVING A MEDIAN MACROPORE DIAMETER OF MORE THAN 300 NM, AND ITS USE IN HYDROGENATION

Номер: US20170120224A1
Принадлежит: IFP ENERGIES NOUVELLES

The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process. 1. A catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel , said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina , the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst , said active phase not comprising metal from group VIB , the nickel particles having a diameter of less than 15 nm , said catalyst having a median mesopore diameter in the range 8 nm to 25 nm , a median macropore diameter of more than 300 nm , a mesopore volume , measured by mercury porosimetry , of 0.30 mL/g or more and a total pore volume , measured by mercury porosimetry , of 0.34 mL/g or more.2. The catalyst as claimed in claim 1 , in which the macropore volume is in the range 10% to 40% of the total pore volume.3. The catalyst as claimed in claim 1 , in which the nickel content is in the range 10% to 34% by weight of said element with respect to the total mass of catalyst.4. The catalyst as claimed in claim 1 , having no micropores.5. The catalyst as claimed in claim 1 , ...

Подробнее
04-05-2017 дата публикации

Nickel supported catalyst for combined steam and carbon dioxide reforming with natural gas

Номер: US20170120225A1

A nickel-supported catalyst for combined steam and carbon dioxide reforming, as a catalyst which is used in a process of preparing a synthesis gas by combined steam and carbon dioxide reforming with natural gas, is provided. More particularly, in the nickel-supported catalyst, nickel is supported as an active metal on a lanthanum oxide support.

Подробнее
25-08-2022 дата публикации

CATALYST COMPRISING AN ACTIVE NICKEL PHASE IN THE FORM OF SMALL PARTICLES DISTRIBUTED IN A SHELL AND A NICKEL-COPPER ALLOY

Номер: US20220266225A1
Принадлежит: IFP ENERGIES NOUVELLES

Nickel and copper catalyst, and an alumina support: 1. A catalyst comprising nickel and copper , in a proportion of 1% and 50% by weight of nickel element relative to the total weight of the catalyst , and a second metallic element of copper , in a proportion of 0.5% to 15% by weight of copper element relative to the total weight of the catalyst , and an alumina support , said catalyst being characterized in that:the nickel is distributed both on a crust at the periphery of the support, and in the core of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst;the nickel density ratio between the crust and the core is strictly greater than 3;said crust comprises more than 25% by weight of nickel element relative to the total weight of nickel contained in the catalyst;the mole ratio between nickel and copper is between 0.5 and 5;at least one portion of the nickel and copper is in the form of a nickel-copper alloy;the nickel content in the nickel-copper alloy is between 0.5% and 15% by weight of nickel element relative to the total weight of the catalyst,the size of the nickel particles, measured in oxide form, in the catalyst is less than 7 nm.2. The catalyst as claimed in claim 1 , wherein the nickel density ratio between the crust and the core is greater than or equal to 3.5.3. The catalyst as claimed in claim 1 , wherein said crust comprises more than 40% by weight of nickel element relative to the total weight of nickel contained in the catalyst.4. The catalyst as claimed in claim 1 , wherein the transition interval between the core and the crust of the catalyst is between 0.05% and 3% of the diameter of the catalyst.5. The catalyst as claimed in claim 1 , characterized in that the size of the nickel particles in the catalyst is less than 5 nm.6. The catalyst as claimed in claim 1 , wherein the sulfur content of the alumina support is between 0.001% and 2% by weight relative to the total weight of the alumina support ...

Подробнее
27-05-2021 дата публикации

Mesoporous composite catalysts containing bismuth silicate and transition metal oxide

Номер: US20210154646A1

Composite catalysts having bismuth silicate(s) (e.g. Bi 2 SiO 5 ) and transition metal oxide(s) (e.g. nickel oxide) impregnated on mesoporous silica supports such as SBA-15, mesoporous silica foam, and silica sol. Methods of making and characterizing the composite catalysts as well as processes for oxidatively dehydrogenating alkanes (e.g. n-butane) and/or alkenes (e.g. 1-butene, 2-butene) to corresponding dienes (e.g. butadiene) employing the composite catalysts are also described.

Подробнее
27-05-2021 дата публикации

METHOD FOR FABRICATING NICKEL-CERIUM DIOXIDE-ALUMINUM OXIDE HYBRID NANOPARTICLE CLUSTER CATALYST, NICKEL-CERIUM DIOXIDE-ALUMINUM OXIDE HYBRID NANOPARTICLE CLUSTER CATALYST AND METHOD FOR SYNTHESIZING POLYETHERAMINE

Номер: US20210154655A1
Принадлежит:

The present disclosure provides a method for fabricating a nickel-cerium dioxide-aluminum oxide hybrid nanoparticle cluster catalyst. The method includes a solution preparation step, an aerosolizing step, a drying step, a first calcining step, a reducing gas adding step, and a second calcining step. The solution preparation step is provided for preparing a precursor solution. The aerosolizing step is performed for obtaining an atomized droplet. The drying step is performed for converting to a precursor crystallite. The first calcining step is performed for obtaining an oxidation state catalyst. The reducing gas adding step is performed for adding hydrogen. The second calcining step is performed for obtaining the nickel-cerium dioxide-aluminum oxide hybrid nanoparticle cluster catalyst. 1. A method for fabricating a nickel-cerium dioxide-aluminum oxide hybrid nanoparticle cluster catalyst , comprising:performing a solution preparation step, wherein a catalytically active precursor and a supporter precursor are mixed to obtain a precursor solution, and the catalytically active precursor contains a nickel ion and a cerium ion, the supporter precursor contains an aluminum ion;performing an aerosolizing step, wherein the precursor solution is aerosolized to obtain an atomized droplet;performing a drying step, wherein the atomized droplet is converted to a precursor crystallite by evaporation-induced self-assembly;performing a first calcining step, wherein the precursor crystallite is calcined to obtain an oxidation state catalyst;performing a reducing gas adding step, wherein hydrogen is added as a reducing gas; andperforming a second calcining step, wherein the oxidation state catalyst is calcined to obtain the nickel-cerium dioxide-aluminum oxide hybrid nanoparticle cluster catalyst.2. The method for fabricating the nickel-cerium dioxide-aluminum oxide hybrid nanoparticle cluster catalyst of claim 1 , wherein the catalytically active precursor is a mixed solution of ...

Подробнее
11-05-2017 дата публикации

MESOPOROUS AND MACROPOROUS NICKEL-BASED CATALYST HAVING A MEDIAN MACROPORE DIAMETER OF GREATER THAN 200 NM AND ITS USE WITH REGARD TO HYDROGENATION

Номер: US20170128912A1
Принадлежит: IFP ENERGIES NOUVELLES

The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method. 1. Supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel , with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst , with said active phase not comprising a metal from group VIB , the nickel particles having a diameter that is less than or equal to 20 nm , said catalyst having a median mesopore diameter of between 8 nm and 25 nm , a median macropore diameter that is greater than 200 nm , a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g , and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g.2. Catalyst according to claim 1 , in which the substrate has a pore volume that is contained in the pores with a diameter of between 100 and 700 nm that is less than 20% of the total pore volume of the substrate.3. Catalyst according to claim 2 , in which the substrate has a pore volume that is contained in the pores with a diameter of between 100 and 700 nm that is less ...

Подробнее
31-07-2014 дата публикации

ELECTROCATALYTIC MATERIALS AND METHODS FOR MANUFACTURING SAME

Номер: US20140213441A1
Принадлежит:

The present invention provides an electrocatalytic material and a method for making an electrocatalytic material. There is also provided an electrocatalytic material comprising amorphous metal or mixed metal oxides. There is also provided methods of forming an electrocatalyst, comprising an amorphous metal oxide film. 1. An electrocatalytic material comprising an amorphous metal oxide film.2. The electrocatalytic material of claim 1 , wherein the amorphous metal oxide film comprises a metal oxide selected from the group consisting of iron oxide claim 1 , cobalt oxide claim 1 , nickel oxide claim 1 , iridium oxide and mixtures thereof.3. The electrocatalytic material of claim 1 , wherein the amorphous metal oxide film comprises a binary metal oxide system claim 1 , wherein the binary metal oxide system is selected from the group consisting of iron/cobalt claim 1 , iron/nickel claim 1 , cobalt/nickel claim 1 , cobalt/aluminum claim 1 , nickel/aluminum claim 1 , iron/aluminum claim 1 , iron/cerium claim 1 , iron/molybdenum claim 1 , iron/copper claim 1 , iron/iridium claim 1 , iron/manganese claim 1 , iron/tin claim 1 , and iron/niobium.4. The electrocatalytic material of claim 1 , wherein the amorphous metal oxide film comprises a ternary metal oxide system claim 1 , wherein the ternary metal oxide system is selected from the group consisting of iron/cobalt/nickel claim 1 , iron/aluminum/nickel claim 1 , aluminum/cobalt/nickel claim 1 , and aluminum/cobalt/iron.5. The electrocatalytic material of claim 1 , wherein the amorphous metal oxide film comprises a metal oxide selected from the group consisting of iridium doped iron oxide claim 1 , niobium doped iron oxide and molybdenum doped iron oxide.6. A method of forming an electrocatalyst claim 1 , comprising an amorphous metal oxide film comprising the steps of:i. providing a substrate;ii. coating the substrate with a metallo-organic precursor solution;iii. converting the metallo-organic precursor to zero oxidation ...

Подробнее